Патенты автора Николаев Олег Валерьевич (RU)

Изобретение относится к нефтегазодобывающей промышленности и может быть применено при эксплуатации газовых, газоконденсатных и нефтяных скважин. Способ эксплуатации газовых и газоконденсатных скважин, в том числе обводненных, заключается в том, что на фонтанной арматуре над крестовиной дополнительно устанавливают трубодержатель и задвижку. Производят расчет условий для спуска гибкой длинномерной лифтовой колонны (ГДЛК) и эксплуатации скважины по межтрубному пространству. Рассчитывают минимально допустимый дебит Qmin в скважине для текущей насосно-компрессорной трубы (НКТ), обеспечивающий непрерывный вынос жидкости в данной НКТ. Определяют там забойное давление. Определяют дебит в скважине Qскв. Сравнивают значения минимального дебита Qmin и расчетного дебита Qскв и далее делают вывод о необходимости спуска в скважину ГДЛК. Причем спуск производится без глушения скважины. Управление производится в ручном режиме. Дальнейшая эксплуатация скважины происходит по кольцевому пространству, образованному между НКТ и ГДЛК до момента прекращения условий по обеспечению выноса жидкости по межтрубному кольцевому пространству (МКП). Техническим результатом является обеспечение условий выноса жидкости, предотвращение процедур, связанных с глушением скважины. 1 з.п. ф-лы, 1 табл., 3 ил.

Изобретение относится к нефтегазодобывающей промышленности и может быть применено при эксплуатации газовых, газоконденсатных и нефтяных скважин. Способ эксплуатации скважин, в том числе обводненных, заключается в том, что на фонтанной арматуре над крестовиной дополнительно устанавливают трубодержатель и задвижку. В скважину в существующую насосно-компрессорную трубу (НКТ) спускают гибкую длинномерную лифтовую колонну (ГДЛК), спуск которой производится без глушения скважины. Дальнейшая эксплуатация скважины происходит по кольцевому каналу, образованному между НКТ и ГДЛК, до момента прекращения условий по обеспечению выноса жидкости по межтрубному кольцевому пространству (МКП). После чего производят извлечение без глушения гибкой длинномерной лифтовой колонны. Спускают новую ГДЛК с наружным диаметром, превышающим диаметр первой ГДЛК. Техническим результатом является обеспечение условий выноса жидкости, предотвращение процедур, связанных с глушением скважины. 1 табл., 3 ил.

Изобретение относится к нефтегазовой промышленности и может применяться для исследования газогидродинамических процессов, происходящих в скважинах газоконденсатных месторождений. Техническим результатом является повышение точности и достоверности проводимых на стенде исследований. Предлагаемый стенд, включающий одну горизонтальную трубу в виде последовательно соединенных отдельных секций труб, насос, соединительные трубопроводы, запорные устройства, расходомеры, подъемные агрегаты, содержит дополнительно три горизонтальные трубы, выполненные в виде последовательно соединенных отдельных стальных секций труб, измерительные устройства, блок подачи газа. Барботер установлен на входе в одну из труб. Содержит проточный нагнетатель, вход которого подключен к блоку подачи газа, а выход - к барботеру, накопительную емкость, выход которой через насос соединен с барботером, сепаратор, вход которого соединен с выходом упомянутой трубы, выход для газа сообщен с проточным нагнетателем, а выход для жидкости - с входом накопительной емкости. Секции горизонтальных труб соединены между собой гибкими соединительными элементами. Все трубы имеют разный диаметр и установлены на подъемных агрегатах. 2 ил.

Изобретение относится к технике для исследования движения жидкостных потоков и газожидкостных потоков, например процессов добычи газа в нефтегазовой отрасли, связанной с изучением процессов движения газожидкостных потоков в вертикальных трубопроводах и отдельных устройствах. Технический результат изобретения заключается в создании упрощенной конструкции устройства, которое обеспечивает высокое качество проведения исследований газожидкостных потоков, за счет повышения точности проводимых экспериментов. Устройство содержит испытуемую колонну, смеситель газа и жидкости, кран впуска и выпуска газа, сепаратор, центробежный газовый нагнетатель, жидкостный насос, расходомер жидкости, расходомер газа, блок датчиков перепада давления, блок датчиков давления и температуры, блок аналого-цифрового преобразования и блок обработки данных и визуализации результатов наблюдения. 4 ил.

Изобретение относится к технике для исследования движения жидкостных потоков и газожидкостных потоков, например процессов добычи газа в нефтегазовой отрасли, связанной с изучением процессов движения газожидкостных потоков в вертикальных и отдельных устройствах. Технический результат изобретения заключается в расширении функциональных возможностей способа, позволяющего определять водосодержание вертикальной испытуемой колонны в режиме реального времени. Способ включает измерение давления, температуры, расхода вещества на установившихся режимах работы. В контур установки нагнетают газ до рабочего давления, запускают центробежный газовый нагнетатель и путем регулирования частоты вращения ротора устанавливают требуемую величину расхода газа. С помощью жидкостного насоса в испытуемую колонну подают воду, обеспечивая в ней установившийся режим за счет монотонного во времени роста потерь давления до ее заполнения газожидкостным потоком и постоянного уровня потерь давления в ее нижнем участке. По результатам проведенных измерений на установившемся режиме определяют объем жидкости Vж в исследуемом газожидкостном потоке, как:Vж=qж·(t2-t1), где: t1 - время начала поступления в испытуемую колонну воды; t2 - время начала установившегося режима в испытуемой колонне; qж - объемный расход жидкости при рабочих условиях; и скорость жидкости, приведенную к сечению трубы колонны:, где D - внутренний диаметр вертикальной испытуемой колонны; а также объемное водосодержание φ в исследуемом газожидкостном потоке. При этом среднюю истинную скорость жидкости w определяют исходя из того, что занимаемая в сечении трубы колонны площадь жидкой фазы пропорциональна объемному водосодержанию φ. 4 ил.

Изобретение относится к сфере обработки и хранения больших объемов разнородных данных и может быть использовано в системах управления базами данных (БД) для организации высокоэффективного поиска информации

Изобретение относится к областиакустооптики и акустоэлектроники и может быть использовано в системах оптической связи и оптической локации

Изобретение относится к квантовой электронике и может быть использовано в атмосферных лазерных линиях связи с повышенной скрытностью передачи информации

Изобретение относится к радиосвязи и может быть использовано в системах радиочастотной идентификации на поверхностных акустических волнах (ПАВ)

Изобретение относится к квантовой электронике и может быть использовано в системах оптической связи по открытому атмосферному каналу с подвижными и стационарными объектами, рассредоточенными на местности

Изобретение относится к области микроэлектроники и может быть использовано в технологии изготовления полупроводниковых изделий (ППИ), а также для анализа изделий, отказавших у потребителя

Изобретение относится к области микроэлектроники и может быть использовано в технологии изготовления полупроводниковых интегральных схем (ИС), а также для анализа изделий, отказавших у потребителя

Изобретение относится к области радиотехники и может быть использовано для идентификации и охраны различных объектов

 


Наверх