Патенты автора Петров Николай Николаевич (RU)

Изобретение может быть использовано при строительстве и ремонте подземных металлических сооружений и, предпочтительно, для промысловых, технологических и магистральных нефте-, газо-, продуктопроводов. Способ противокоррозионной защиты катодно-поляризуемых подземных металлических сооружений с полимерным слоем мастики в изолирующем покрытии заключается в катодной поляризации от внешнего источника постоянного тока металлического сооружения, на котором предварительно формируют изоляционное покрытие, которое на основе праймера адгезионно прилегает к металлической поверхности. Затем формируют следующий адгезионный связующий антикоррозионный слой в виде полимерного компаунда. После чего на нем формируют наружный гидроизолирующий слой. Для формирования адгезионного связующего антикоррозионного слоя используют полимерный компаунд, содержащий полимерное термореактивное или термопластичное связующее и достаточное количество микрочастиц анионита в соответствующей ионной форме. Предварительно определяют в составе полимерного компаунда количество микрочастиц анионита в соответствующей ионной форме, ионы которого по лабораторному тесту определения площади отслаивания защитных покрытий при катодной поляризации позволяют снизить относительно исходного полимерного связующего без добавления анионита площадь отслаивания более чем на 75%. После высыхания праймера наносят на него текучий полимерный компаунд при толщине его слоя от 0,5 до 3 мм с одновременным нанесением при использовании термопластичного связующего слоя армирующего геотекстиля в виде стеклосетки. После этого в качестве наружного гидроизолирующего слоя металлическое сооружение, например трубопровод, обертывают полимерным пленочным материалом с формированием адгезионно-прилегающего изолирующего полимерного слоя, совместимого с типом полимера, прилегающего к защищаемой металлической поверхности. В случае термореактивного связующего для формирования наружного гидроизолирующего слоя используют текучий высокоомный полимерный компаунд, адгезионно-совместимый с полимер-анионитным слоем. Раскрыты полимерный компаунд и применение микрочастиц анионита в соответствующей ионной форме в качестве добавки в полимерный компаунд. Технический результат заключается в улучшении противокоррозионной защиты полимерных термореактивных и термопластичных полимерных покрытий за счет увеличения долговечности адгезионной связи с металлической поверхностью при нивелировании рисков возникновения подпленочной коррозии под отслоившемся покрытием. 3 н. и 2 з.п. ф-лы, 2 ил., 4 табл.

Изобретение относится к области контроля биологического обрастания защищаемых поверхностей в природных водных средах. Способ формирования защитного покрытия, обладающего в водной среде противообрастательным эффектом, заключается в том, что покрытие выполняют на основе полимерного или композиционного материала, обладающего адгезионными свойствами, в который вводят биоцидную композицию. Полученный состав наносят на защищаемую поверхность. Биоцидную композицию вводят в полимерный или композиционный материал в сорбированном виде на гранулах материала, обладающего открытой пористостью от 40 до 90% и возможностью сорбирования не менее 10 мг/см2 в формируемом контактном слое. В качестве биоцидной композиции используют раствор биоцида или смеси биоцидов с критической скоростью диффузии в водной среде не более 5 мкг/см2 × сутки. После сорбирования раствора биоцидной композиции гранулами сорбента последние нагревают до температуры ниже температуры разложения биоцида для выделения из сорбированного раствора растворителя с формированием на гранулах твердой сорбированной фазы с ее содержанием от 5 до 25 мас.%, гомогенизируют и вводят в нее отвердитель и регулятор вязкости. Полученную смесь наносят на защищаемую поверхность и выдерживают до отверждения. Изобретение позволяет производить контролируемый массообмен с водными средами биоцидсодержащих композиций и улучшать противообрастающий эффект. 3 н.п. ф-лы, 3 ил., 4 табл.

Изобретение относится к восстановлению изолирующей поверхности катодно-поляризуемых металлических конструкций и сооружений. Способ восстановления включает насыщение пристеночного почвенного пространства на участке с поврежденной сплошностью изоляции путем закачивания в почву на глубину залегания химического реагента. В качестве реагента закачивают иммобилизованный в виде гелевой субстанции электроактивный мономер. Устанавливают значение катодного потенциала на поверхности конструкции, соответствующее минимальному выделению газообразного водорода, при котором мономер электроосаждается с образованием твердой пленки. Потенциал поддерживают в течении периода, необходимого для формирования на оголенном участке полимерной пленки, обладающей изолирующей способностью. Далее проводят локальное индукционное нагревание металла конструкции до 50°C. Также предусмотрен способ восстановления в обводненной среде, иммобилизованный электроактивный мономер на основе эпоксиноволачных водорастворимых аддуктов и способ придания способности к электроосаждению полимерному органическому соединению. Изобретение позволяет восстановить изолирующую поверхность без удаления старого покрытия. 4 н.п. ф-лы, 1 табл.

Изобретение относится к строительству и ремонту подземных металлических сооружений для защиты их от электрохимической коррозии в условиях катодной поляризации. Способ противокоррозионной защиты заключается в катодной поляризации от внешнего источника постоянного тока сооружения с формированным на нем изоляционным покрытием в виде адгезионно взаимодействующих между собой слоев на основе праймера. В качестве мастичной основы используют битумно-полимерную мастику с частицами ионита при размерности частиц не более 50 мкм и интеркалированных ионами Mg2+ или Ni2+, которые образуют при ионообменных процессах в растворе щелочного электролита, при катодной поляризации, нерастворимые гидроокиси названных металлов. Битумно-полимерная мастика имеет следующий состав компонентов, мас.%: битум БНД-60/90 - 0÷30; битум БН-70/30 - 35÷85; термоэластопласт - 4÷7; нефтеполимерная смола - 2÷10; полибутадиеновый низкомолекулярный каучук - 5÷10; пластификатор - 2÷10; дисперсный порошок ионита с размерностью фракций 5÷50 мкм с ионогенной группой в Mg2+ или Ni2+-форме - 4÷15. 2 н. и 3 з.п. ф-лы, 3 табл.
Изобретение относится к конструкции печей при оборудовании бань стационарного и мобильного типов, а также для обогрева бытовых и производственных помещений. Печь для бани содержит корпус с крышкой и дверкой для загрузки топлива и с топкой, размещенной внутри указанного корпуса, при этом между корпусом печи и топкой установлены теплообменные элементы с развитой поверхностью теплообмена, дымовую трубу, соединяющую полость топки с окружающей атмосферой, контейнер с теплообменным крупнодисперсным материалом, размещенный внутри корпуса печи в непосредственной близости от зоны горения печи. В контейнере установлено устройство для парообразующей жидкости, содержащее емкость для парообразующей жидкости с каналом для заливки жидкости, клапаном сброса избыточного давления и трубопроводом отвода пара. Трубопровод установлен таким образом, что его входная часть соединяется с полостью емкости для парообразующей жидкости, а выходная часть открывается в нижнюю часть корпуса печи, ниже упомянутых теплообменных элементов. В корпусе печи выполнены щели для выхода пара. 2 з.п. ф-лы, 3 ил.

Группа изобретений относится к области противокоррозионной защиты и предназначена для диагностики скрытого коррозионного дефекта и контроля состояния металлических конструкций. Технический результат - предотвращение или резкое снижение подпленочной коррозии защищаемой металлической конструкции, в частности подземного трубопровода, и таким образом повышение надежности противокоррозионной защиты металлических сооружений, находящихся под катодной защитой. Способ диагностирования скрытого коррозионного дефекта под покрытием и нанесенного на металлическую поверхность электрохимически активного композиционного материала для формирования слоя из материала и по крайней мере одного слоя из гидроизолирующего токопроводящего материала. 3 н.п. ф-лы, 3 ил.

Изобретение относится к конструкции печей и способу генерации перегретого пара. Технический результат - получение пара с регулируемой температурой и влажностью, повышение экономической работы устройства. Способ получения пара заключается в обеспечении взаимодействия парообразующей жидкости с разогретыми теплообменными элементами, при этом указанное взаимодействие осуществляют при помощи печи. Печь содержит корпус с крышкой и дверкой для загрузки топлива и с топкой, размещенной внутри указанного корпуса, дымовую трубу, соединяющую полость топки с окружающей атмосферой, контейнер с теплообменным крупнодисперсным материалом, размещенный внутри корпуса печи в непосредственной близости от зоны горения печи. В контейнере устанавливают устройство для парообразующей жидкости, содержащее емкость для парообразующей жидкости с каналом для заливки жидкости, клапаном сброса избыточного давления и трубопроводом отвода пара. Причем упомянутый трубопровод устанавливают таким образом, что его входная часть соединяется с полостью емкости для парообразующей жидкости, а выходная часть открывается в нижнюю часть корпуса печи, между топкой и корпусом. При этом между корпусом печи и топкой устанавливают теплообменные элементы с развитой поверхностью теплообмена, а в корпусе печи выполняют щели для выхода пара. Для получения пара парообразующую жидкость разогревают в упомянутой емкости до температуры парообразования, затем полученный влажный пар направляют к основанию печи, между топкой и корпусом печи, ниже уровня расположения/на уровне расположения упомянутых теплообменных элементов, где производят его подогрев и осушение от содержащихся в нем частиц влаги при помощи указанных теплообменных элементов. После чего полученный перегретый сухой пар направляют в щели, выполненные в корпусе печи для выхода пара. 2 з.п. ф-лы, 2 ил.

Изобретение относится к области противокоррозионной защиты. Способ заключается в том, что формируют на металлической поверхности многослойное защитное покрытие. Первый слой формируют из материала, способного взаимодействовать с водным электролитом и менять свойство электропроводности. Второй слой - из гидроизолирующего токопроводящего материала. Электрохимически активный композиционный материал, способный взаимодействовать с водным электролитом, понижает свое электрическое сопротивление при контакте с водным электролитом и образован при смешивании компонента А и компонента Б. Гидроизоляционный низкоомный материал для формирования второго и последующих слоев защитного покрытия образован при смешивании компонента А1 и компонента Б1. Покрытие включает первый слой, сформированный из электрохимически активного композиционного материала, и, по меньшей мере, один второй слой, сформированный из гидроизоляционного низкоомного материала. В результате достигается возможность при использовании катодной защиты предотвратить или резко уменьшить подпленочную коррозию. 4 н.п. ф-лы, 6 табл.

Изобретение относится к области энергетики и может быть использовано для преобразования энергии потока в электроэнергию или для выполнения механической работы
Изобретение относится к соединению разнородных материалов, в частности к пайке, и может быть использовано в электронной, радиотехнической промышленности и прецизионном приборостроении, там, где к изделиям предъявляются высокие требования по вакуумной плотности, термостойкости, влагостойкости, коррозионностойкости при воздействии высоких давлений, высоких температур и ударных нагрузок

Изобретение относится к области аэродинамических испытаний, а именно к установкам для исследования попадания посторонних частиц в воздухозаборник летательного аппарата

 


Наверх