Патенты автора Самокрутов Андрей Анатольевич (RU)

Использование: для ультразвуковой толщинометрии. Сущность изобретения заключается в том, что осуществляют возбуждение затухающих колебаний в контролируемом объекте коротким ударом импактора по поверхности контролируемого объекта в точку возбуждения, являющуюся геометрическим центром грани возбуждения, и регистрируют сигналы акустических резонансных колебаний, на основе которых вычисляют амплитудно-частотную характеристику контролируемого объекта, по которой измеряют значение частоты ƒmax, соответствующей максимуму амплитуды амплитудно-частотной характеристики, и по формуле Н=С/2ƒmax, где С - это скорость распространения акустической волны в материале контролируемого объекта, определяют значение толщины Н контролируемого объекта, при этом регистрацию сигналов резонансных колебаний осуществляют посредством приема сигнала основного резонансного колебания в основной точке регистрации, расположенной в геометрическом центре грани, противоположной грани возбуждения, и сигналов дополнительных резонансных колебаний в дополнительных точках регистрации, расположенных в геометрических центрах остальных четырех граней контролируемого объекта, причем расстояние от точки возбуждения до точки приема сигнала основного резонансного колебания является измеряемой толщиной Н контролируемого объекта, сигнал основного резонансного колебания инвертируют по фазе, далее суммируют его с сигналами дополнительных резонансных колебаний, по полученному сигналу суммарного резонансного колебания определяют амплитудно-частотную характеристику контролируемого объекта. Технический результат: повышение достоверности и точности результатов измерения толщины компактных образцов материалов и изделий, имеющих пространственную форму куба или параллелепипеда. 4 ил.

Использование: для акустического волноводного неразрушающего контроля труб. Сущность изобретения заключается в том, что осуществляют перемещение диагностического устройства вдоль трубопровода, периодически возбуждают ультразвуковые колебания. В выбранном интервале времени принимают ультразвуковые колебания от акустических нормальных волн, прошедших по стенкам трубопровода и отраженных от различных нарушений сплошности материала стенок, причем возбуждение и прием ультразвуковых колебаний осуществляют в нескольких точках. Выбирают эхосигналы по предварительно рассчитанным временам задержек для всех типов акустических нормальных волн, далее строят нормированные распределения их амплитуд, затем строят распределение величины, значения которой равны максимальным значениям амплитуд суммарных сигналов от разных типов акустических волн для совпадающих по координатам точек поверхности стенок трубопровода, и по этому распределению судят о наличии и величине дефектов в стенках трубопровода. При этом значения временных задержек корректируют на основе закономерности изменения скорости распространения акустических нормальных волн, возникающих вследствие наличия геометрической анизотропии и анизотропии свойств материала при различной толщине стенки трубопровода. Технический результат: повышение чувствительности и достоверности акустического контроля труб. 3 з.п. ф-лы, 10 ил.

Использование: для неразрушающего акустического контроля объекта. Сущность изобретения заключается в том, что акустическая антенна с сухим точечным контактом пьезопреобразователей с поверхностью контролируемого объекта содержит подложку, выполненную с возможностью закрепления на поверхности контролируемого объекта, прижимное устройство пьезоэлектрических преобразователей и программно-аппаратный комплекс, электрически соединенный с пьезоэлектрическими преобразователями антенны, при этом подложка выполнена гибкой с параллельными пазами, а пьезоэлектрические преобразователи соединены в несколько съемных модулей антенных решеток, установленных в эти пазы, выполнены приемопередающими и способны активироваться как последовательно, так и с задержкой во времени t, при этом прижимное устройство выполнено в виде магнитопроводов, установленных в съемных модулях пьезоэлектрических преобразователей. Технический результат: увеличение зоны зондирования. 2 н. и 4 з.п. ф-лы, 5 ил.

Группа изобретений относится к трубопроводному транспорту и может быть использована для диагностики технического состояния переходов магистральных трубопроводов (МТ) через дороги. Аппаратура содержит защитный кожух, две акустические системы, расположенные на МТ по разные стороны от дороги. Акустические системы выполнены в виде антенных решеток пьезоэлектрических преобразователей, прикрепляемых к МТ для обеспечения сухого акустического контакта. Акустические системы могут работать в различных режимах, задаваемых программным блоком. Техническим результатом, получаемым от изобретений, является повышение информативности о техническом состоянии перехода практически для любой по ширине дороги. 2 н.п. ф-лы, 5 ил.

Использование: для ультразвукового контроля толщины стенки трубопровода. Сущность изобретения заключается в том, что при перемещении вдоль трубопровода диагностического устройства периодически возбуждают импульсы УЗ-колебаний касательными к поверхности трубопровода колебательными силами в точках акустических контактов приёмно-излучающих элементов, в выбранном интервале времени принимают из этих же точек реализации УЗ-колебаний стенок трубопровода и с помощью совместной обработки принятых реализаций определяют толщину стенки трубопровода и скорость распространения поперечных УЗ-волн в ней. При обработке усредняют реализации, принятые на одинаковых расстояниях (базах) от точек возбуждения колебаний, полученные усреднённые реализации стробируют на определённых интервалах, зависящих от величины базы, на которой были приняты реализации, составляющие каждую усреднённую реализацию. Затем производят преобразование масштаба (шкалы) времени распространения УЗ-импульсов от точки возбуждения до донной поверхности стенки и обратно к точке приёма в значения времени пролёта импульсов удвоенного расстояния между поверхностями стенки, суммируют усреднённые реализации в преобразованном масштабе времени, вычисляют автокорреляционную функцию от полученной суммарной реализации и определяют в ней временной интервал между главным максимумом и наибольшим из побочных максимумов. И, наконец, вычисляют толщину путём умножения половины этого интервала на скорость поперечных волн в стенке трубопровода, а скорость определяют путём деления разности величин двух баз на разность времён распространения импульсов поперечных волн по этим базам. Технический результат: обеспечение возможности непрерывного измерения текущей толщины стенки трубопровода при ее сканировании, а также обеспечение возможности непрерывного измерения текущей скорости ультразвуковых волн в стенке трубопровода. 4 з.п. ф-лы, 5 ил.

Оптическое измерительное устройство, содержащее первый лазерный модуль, формирующий первую световую линию на поверхности объекта контроля, видеокамеру и систему обработки, отличающееся тем, что в него введены второй и третий лазерные модули, формирующие на поверхности объекта контроля две параллельные световые линии, отстоящие друг от друга на заданном расстоянии и перпендикулярные первой световой линии, причём первый лазерный модуль установлен так, что плоскость его светового потока перпендикулярна поверхности объекта контроля, видеокамера установлена так, что её оптическая ось составляет с нормалью к поверхности объекта контроля заданный угол, а проекция оптической оси на поверхность объекта контроля параллельна световым линиям второго и третьего лазерных модулей и расположена посередине между ними. Технический результат заключается в повышении точности поддержания траектории движения транспортной платформы вдоль сварного шва с предельными отклонениями от установленного расстоянии от оси шва порядка миллиметра при движении как справа, так и слева от валика усиления. 2 з.п. ф-лы, 1 ил.

Использование: для ультразвукового (УЗ) контроля объектов из твердых материалов. Сущность изобретения заключается в том, что согласно способу УЗ контроля выполняют излучение в объект контроля (OK) поперечных волн с горизонтальной поляризацией (SH волн), принимают эхо-сигналы из него и получают путем пространственно-временной обработки принятых сигналов распределение отражающей способности точек структуры материала ОК. Информацию о дефектности ОК получают из этого распределения. SH волны излучают путем создания на поверхности объекта касательных к поверхности колебательных сил. Прием SH волн осуществляют путем преобразования касательных к поверхности объекта колебательных смещений материала в электрические сигналы. Реализуется способ с помощью решетки преобразователей, выполненных в двух вариантах, первый из которых содержит герметичный корпус с демпфирующей жидкостью и пьезоэлемент со сдвиговыми колебаниями по толщине, направленными параллельно поверхности контролируемого объекта, установленный внутри корпуса на протектор, имеющий точечный контакт с поверхностью ОК. Второй вариант отличается тем, что содержит два пьезоэлемента. Созданная антенная решетка с усовершенствованными характеристиками может состоять из преобразователей любого из двух вариантов, которые установлены в ее корпусе на прижимных механизмах с возможностью возвратно-поступательного перемещения перпендикулярно ее рабочей поверхности. Технический результат: расширение функциональных возможностей системы неразрушающего контроля с одновременным улучшением ее дефектоскопических и эксплуатационных характеристик. 4 н. и 4 з.п. ф-лы, 5 ил.

Использование: для ультразвукового неразрушающего контроля объектов из структурно-неоднородных материалов, преимущественно изделий из бетона. Сущность изобретения заключается в том, что во множество точек поверхности объекта контроля излучают ультразвуковые зондирующие импульсы продольных или поперечных волн, принимают из тех же точек реализации ультразвуковых колебаний, вызванных ультразвуковыми импульсами, отражёнными от неоднородностей внутренней структуры материала объекта и от любых границ раздела между средами с разной акустической плотностью, производят реконструкцию трёхмерного распределения амплитуды ультразвука, рассеянного точками структуры материала объекта, в полученном трёхмерном распределении выделяют точки с амплитудами, превышающими средний уровень эффективного значения шума в четыре и более раз, объединяют выделенные точки распределения в группы по критерию близости их расположения, определяемого расстоянием между соответствующими им точками структуры объекта, не превышающем половины длины волны ультразвука, когерентно суммируют фрагменты принятых реализаций ультразвуковых колебаний, содержащие эхо-сигналы от точек внутренней структуры объекта, которые соответствуют точкам трёхмерного распределения, принадлежащим каждой выделенной группе, и если при излучении и приёме импульсов продольных ультразвуковых волн фаза суммарного фрагмента реализаций некоторой группы точек трёхмерного распределения отличается от фазы зондирующих импульсов по модулю менее чем на 45 градусов, то это означает, что среда за границей раздела более акустически плотная, чем среда до границы раздела, если же отличие фаз находится в интервале от 135 до 225 градусов, то, наоборот, среда за границей раздела менее акустически плотная, а при излучении и приёме импульсов поперечных ультразвуковых волн соотношения акустических плотностей сред для указанных разностей фаз обратны соотношениям для продольных волн. Технический результат: расширение диапазона достоверного определения соотношения акустических плотностей сред у границы раздела в область низких отношений сигнал/шум. 2 з.п. ф-лы, 5 ил.

Использование: для ультразвукового (УЗ) неразрушающего контроля протяженных металлических изделий. Сущность изобретения заключается в том, что при перемещении вдоль трубопровода периодически возбуждают УЗ колебания в заданной области внешней или внутренней его поверхности, связанной с диагностическим устройством, принимают из этой же области реализации УЗ колебаний от акустических нормальных волн, отраженных от различных нарушений сплошности материала стенок, и в результате обработки принятых реализаций определяют распределение дефектов в стенках трубопровода, при этом возбуждают УЗ колебания касательными к поверхности трубопровода колебательными силами акустических контактов приемно-излучающих элементов диагностического устройства поочередно в каждой точке, а прием колебаний осуществляют одновременно во всех точках в пределах указанной области в выбранном интервале времени, и из реализаций УЗ колебаний, принятых во всех точках поверхности трубопровода при перемещении вдоль него, по предварительно рассчитанным временам задержки для всех типов акустических нормальных волн выбирают эхосигналы от каждой точки поверхности стенок, когерентно суммируют их для каждой точки поверхности отдельно для каждого типа волн, вычисляют амплитуды суммарных сигналов и строят нормированные распределения этих амплитуд в соответствии с координатами точек поверхности стенок трубопровода отдельно для каждого типа акустических волн, после чего составляют одно распределение величины, значения которой равны максимальным значениям амплитуд суммарных сигналов от разных типов акустических волн для совпадающих по координатам точек поверхности стенок трубопровода, и по этому распределению судят о наличии и величине дефектов в стенках трубопровода. Технический результат: обеспечение возможности обнаружения малоразмерных и слабо отражающих дефектов в стенках трубопровода. 2 н. и 8 з.п. ф-лы, 3 ил.

Использование: для дефектоскопии протяженных изделий эхометодом. Сущность изобретения заключается в том, что ультразвуковая антенная решетка, содержащая установленные в корпусе ультразвуковые преобразователи с сухим точечным контактом на рабочей поверхности решетки, индивидуальным прижимным механизмом с возможностью возвратно-поступательного перемещения перпендикулярно рабочей поверхности решетки и схемой управления, при этом преобразователи расположены в плане вдоль зигзагообразной линии с точками контакта в ее вершинах, векторы колебательных смещений всех ультразвуковых преобразователей ориентированы поперек или вдоль продольной оси антенной решетки, дополнительно установлены постоянные магниты, размещенные на рабочей поверхности решетки, схема управления выполнена в виде усилителя и генератора импульсов для каждого преобразователя, общего блока управления, устройства обработки сигналов и блока связи, при этом выход каждого генератора импульсов подключен к входу соответствующего преобразователя и входу соответствующего усилителя, выход которого подключен к соответствующему информационному входу устройства обработки сигналов, вход генератора импульсов соединен с соответствующим выходом блока управления, синхронизирующий выход которого соединен с входом устройства обработки сигналов, связанным, так же как и блок управления, с блоком связи, выход которого является выходом антенной решетки, связанным с устройством обработки и отображения информации. Технический результат: обеспечение возможности создания устройства с возможностью контроля изделий как с малыми поперечными размерами, так и изделий с двоякой протяженностью. 1 з.п. ф-лы, 4 ил.

Использование: для неразрушающего контроля металлических изделий и конструкций. Сущностьзаключается в том, что комплекс для ультразвукового контроля изделий содержит сканирующую X-образную систему электромагнитно-акустических антенных решеток, состоящую из четырех линейных приемно-излучающих антенных решеток, расположенных в плане таким образом, что центры элементов антенных решеток лежат на двух пересекающихся прямых линиях, причем каждая антенная решетка расположена по одну сторону от точки их пересечения и снабжена соответствующим блоком импульсного подмагничивания, соединенным своим входом с одним из четырех выходов синхронизатора, пятый выход которого подключен ко входу генератора импульсов возбуждения, каждый из четырех выходов которого подключен ко входу соответствующей антенной решетки, выходы антенных решеток подключены к соответствующим входам многоканального приемного тракта, оптическое измерительное устройство, выходом подключенное к первому входу вычислительного блока, который также имеет связь через соответствующие шины обмена данных с синхронизатором, многоканальным приемным трактом и блоком отображения результатов контроля, по меньшей мере, все антенные решетки, блоки импульсного подмагничивания и оптическое измерительное устройство установлены на подвижной платформе, оснащенной датчиком пути и блоком управления движением платформы, при этом выход датчика пути подключен ко второму входу вычислительного блока, выход которого соединен со входом блока управления движением платформы. Технический результат: расширение функциональных возможностей системы неразрушающего контроля с одновременным улучшением ее дефектоскопических и эксплуатационных характеристик. 2 н.и 5 з.п. ф-лы, 6 ил.

Изобретение относится к неразрушающему контролю и может быть использовано при диагностике трубопроводов из ферромагнитных материалов

Изобретение относится к измерительной технике и может быть использовано при ультразвуковой диагностике плоских металлоконструкций определенной толщины

Изобретение относится к области техники неразрушающего контроля и используется для дефектоскопии магистральных газопроводов в процессе их эксплуатации

Изобретение относится к области контрольно-измерительной техники и неразрушающего контроля, а именно к методам измерения толщины, определения текстурной анизотропии и напряженно-деформированного состояния конструкций и проката из черных и цветных металлов и сплавов в широком диапазоне толщин при одностороннем доступе, дефектоскопии и структуроскопии различных материалов и изделий, и предназначено для применения в металлургии, машиностроении, в авиастроении, автомобилестроении и других отраслях промышленности

Изобретение относится к области неразрушающего контроля, а именно к средствам обнаружения дефектов в металлах и сплавах в широком диапазоне толщин при одностороннем бесконтактном доступе, и предназначено для применения в металлургии, машиностроении и др

Изобретение относится к области неразрушающего контроля, а именно к средствам обнаружения дефектов проката и конструкций типа лент, полос, труб, сосудов, рельсов и др

Изобретение относится к области неразрушающего контроля, а именно к средствам дефектоскопии трубопроводов, сварных соединений, корпусов реакторов, железнодорожных рельсов, уложенных в пути, конструкций и сооружений из черных и цветных металлов и сплавов в широком диапазоне толщин при одностороннем доступе, и предназначено для применения в машиностроении, металлургии, в авиастроении, автомобилестроении, энергетике и других отраслях промышленности

Изобретение относится к области неразрушающего контроля, а именно к средствам определения текстурной анизотропии, толщины и напряженно-деформированного состояния конструкций и проката типа лент, полос, труб и др

 


Наверх