Патенты автора Михайлов Сергей Анатольевич (RU)

Изобретение относится к области экспериментальной аэродинамики, а именно к способам определения аэродинамических характеристик воздушных судов. При реализации способа характеристики определяются на текущий момент, текущих окружающих условий, для текущей аэродинамической конфигурации летательного аппарата на основе замеренных аппаратными средствами данных по скорости полета во время разгона летательного аппарата в горизонтальном полете, с учетом произвольного задания вектора тяги двигателя. Технический результат заключается в повышении достоверности определения основных упомянутых выше располагаемых летных характеристик летательного аппарата с учетом направления вектора тяги двигателя. 1 ил.

Изобретение относится к области полимерной химии и технологии получения полимерных композиционных материалов (ПКМ), а именно к способу получения ПКМ с фталонитрильной матрицей по безрастворной технологии, а также к способу получения высокотемпературного композиционного материала для применения в авиационной и космической отраслях промышленности. Способ получения высокотемпературного композиционного материала заключается в том, что в качестве армированного кремнеземного наполнителя используют сплетенную в трикотажную ткань кремнеземную нить, а для поддержания ее сплетенного состояния в последнюю интегрируется арселоновая пряжа, удаляемая при нагреве до 400-600°С в течение 2-12 ч в атмосфере воздуха, после чего проводятся пропитку кремнеземного наполнителя порошкообразным фталонитрильным связующим, выкладывая расчетное количество связующего между слоями наполнителя так, чтобы самый нижний и самый верхний слои связующего составляли половину массы внутренних слоев, и выполняют спекание порошка при 50°С в течение 10 минут после выкладки каждого слоя. При этом содержание связующего в композите не должно составлять более 55% суммарной массы наполнителя и связующего. Отверждение после пропитки полученной композитной смеси проводят в автоклаве, нагревая полученную выше смесь до температуры 190°С со скоростью 0,5-2°С/мин с выдержкой в течение 4 ч под давлением 8 бар, после чего выполняется процесс постотверждения получаемого композитного материала при температуре 330°С в течение 8 ч и атмосферном давлении. Изобретение позволяет получить высокотемпературный композиционный материал и изделия из него методами формования с прогнозируемыми параметрами прочности без использования органических и неорганических растворителей и солей, а также без порошкообразных металлов молибдена, никеля, меди и др. 2 н.п. ф-лы, 4 ил., 1 табл.

Группа изобретений относится к материаловедению, а именно к способу и устройству капсулирования субмикронных частиц, и может быть использована как для получения наполнителей полимерных композитных материалов, так и капсулированных частиц для медицинского назначения, сельского хозяйства, печатной промышленности. Способ капсулирования субмикронных частиц полимером включает формирование первого двухфазного потока субмикронных частиц за счет того, что получают устойчивую взвесь субмикронных частиц в газе в замкнутом объеме, на вход которого подают газ-носитель, и на выходе которого получают первый двухфазный поток субмикронных частиц, температура которых совпадает с температурой окружающей среды (18÷30)°C, а расход первого двухфазного потока субмикронных частиц устанавливают за счет изменения концентрации субмикронных частиц в их взвеси в газе, одновременно с первым двухфазным потоком субмикронных частиц формируют второй поток частиц мономера, за счет того, что используют жидкий мономер стирола и осуществляют испарение стирола за счет его нагрева до температуры кипения мономера стирола, и формируют второй поток мелкодисперсных частиц мономера стирола, температура которых выше температуры субмикронных частиц, затем после заряда, диспергирования одновременно субмикронных частиц и частиц мономера, а также осаждения мелкодисперсных частиц мономера на поверхности субмикронных частиц получают слой мономера на поверхностях субмикронных частиц в камере смешения, выполненной в виде усеченного конуса, получают слой мономера на поверхностях субмикронных частиц, требуемую толщину которого обеспечивают путем подбора расхода субмикронных частиц, затем осаждают субмикронные частицы со слоем мономера на их поверхностях в дистиллированную воду, температура которой не ниже 85°C и не выше 100°C, и отделяют капсулированные субмикронные частицы от продуктов реакции и газа-носителя, затем осуществляют полимеризацию мономера стирола на поверхностях субмикронных частиц путем перемешивания получившегося раствора в течение не менее 4 часов при температуре 90±5°C и получают водную суспензию субмикронных частиц, капсулированных полистиролом. Устройство капсулирования субмикронных частиц полимером для осуществления способа включает источник газа-носителя, выход которого подсоединен к входу газового тракта, выход которого подсоединен к редуктору газа, резервуар для конгломератов субмикронных частиц, выход которого подсоединен к входу первой разрядной камеры, к электродам которой подсоединен выход первого регулируемого источника тока разряда, второй регулируемый источник тока разряда, выход которого подсоединен к электродам второй разрядной камеры, камеры смешения, к первому и второму входам которой подсоединены выходы первой и второй разрядной камер соответственно. При этом выход газового тракта подсоединен к входу резервуара для конгломератов субмикронных частиц, дно которого представляет собой мембрану, расположенную в основании резервуара на подвижной части электромагнита, к входу которого подключен генератор колебаний с регулировкой частоты и амплитуды колебаний, также дополнительно содержит испаритель для жидкого мономера, к которому подсоединен первый регулируемый источник напряжения, выход испарителя для жидкого мономера соединен с входом второй разрядной камеры, а выход камеры смешения, выполненной в виде усеченного конуса, обращенный к емкости для дистиллированной воды меньшим своим основанием, расположен над емкостью для дистиллированной воды, в которой расположен нагревательный элемент, вход которого подсоединен к выходу второго регулируемого источника напряжения, а также перемешивающая лопатка. Технический результат предлагаемого способа капсулирования субмикронных частиц полимером и устройства, его реализующего, заключается в повышении эффективности отделения капсулированного полимерного материала от продуктов реакции и газа-носителя. 2 н.п. ф-лы, 1 ил.

Изобретение может быть использовано для изготовления несущих конструкций в авиационной, транспортной и строительной отраслях промышленности. Предложен способ изготовления слоистых трубчатых изделий из композиционных материалов на основе неотвержденного полимерного связующего, включающий термоусадку технологических слоев из препрега и полиамидной ленты на оснастке. Перед нанесением слоев препрега оснастку 1 покрывают слоем разделительной жидкости 2, обладающей коэффициентом трения в диапазоне 0,05-0,1, и нагревают до температуры перехода связующего в вязко-текучее состояние. Намотку слоев препрега 3 на оснастку осуществляют с усилием 10-30 H, при этом каждый последующий слой после нанесения прикатывают поверх предыдущего. Перед намоткой слоя полиамидной ленты с термоусадкой 6 поверх слоев препрега укладывают жертвенную ткань 4, после чего оснастку оборачивают дренажно-впитывающим материалом 6. Собранную преформу выдерживают в температурных условиях до окончания полимеризации связующего. Технический результат заключается в увеличении прочности слоистых трубчатых изделий при снижении энергозатрат и трудоемкости при их производстве. 2 ил., 1 пр.

Использование: для предотвращения образования и удаления льда с наружных поверхностей элементов конструкции летательных аппаратов, ветряных электрогенераторов, элементов конструкции линий электропередач, судов, токоприемников железнодорожного транспорта и т.д. Технический результат – обеспечение высокой стойкости к истиранию нагревательных элементов. Нагревательные элементы изготавливают из полисилоксановой композиции, стойкой к истиранию. В процессе получения добавляют в композицию химические соединения, повышающие ее гидрофобность и дисперсные частицы электропроводящего материала, обеспечивающие электропроводность полисилоксановой композиции. Нагревательные элементы соединяют последовательно относительно друг друга, а последовательное соединение всех нагревательных элементов соединяют параллельно источнику электропитания и подключают к выходу элемента коммутации. К первому входу коммутационного элемента подключают блок управления, а ко второму входу элемента коммутации подключают источник электропитания. 3 ил.
Изобретение относится к формированию покрытия для защиты прозрачного монолитного поликарбоната от истирания и может быть использовано в авиастроении, автомобилестроении, строительстве, приборостроении. Технический результат заключается в получении однослойного покрытия, обладающего высокой адгезией к полимерному стеклу, абразивостойкостью и оптической прозрачностью. Способ формирования защитного покрытия на прозрачном монолитном поликарбонате включает нанесение на поликарбонат раствора на основе термоотверждаемой покровной водно-спиртовой полисилоксановой композиции и ее отверждение. В раствор композиции дополнительно добавляют аминофункциональный триалкоксисилан в количестве 1-20 массовых процентов по сухому остатку и смесь растворителей изопропанол/н-бутанол в соотношении 1:1 соответственно по весу в количестве 325 – 375 г, перемешивают, наносят на поликарбонат, сушат при температуре 15 – 25 °С в течение 20-30 мин и отверждают при температуре 115-125 °С в течение 60-120 мин. 3 пр.

Изобретение относится к области измерительной техники, в частности к средствам контроля напряжений в монолитном полимерном материале, и может быть использовано при определении физико-механического состояния монолитного полимерного материала, обладающего пьезоэлектрическим эффектом и применяющегося, например, для остекления зданий, сооружений, транспортных средств и т.д Устройство контроля напряжений в монолитном полимерном материале содержит датчик деформации, также дополнительно содержит блок предварительной обработки сигнала, выход которого соединен с входом усилителя сигнала, выход которого соединен с входом первого аналого-цифрового преобразователя, выход которого соединен с первым входом блока обработки информации, два электрода из проводящего материала, к каждому из которых подсоединены по одному проводнику, другой конец каждого из проводников соединен с первым и вторым входами усилителя напряжения, выход которого соединен с входом второго аналого-цифрового преобразователя, выход которого соединен с первым входом блока обработки информации, выход которого соединен с блоком отображения информации, причем вход блока предварительной обработки соединен с выходом датчика деформации. Технический результат - обеспечение контроля изменений в структуре материала за счет одновременного измерения пьезоэлектрического отклика и механической деформации монолитного полимерного материала на внешнее механическое воздействие. 5 ил.

Способ и устройство для предотвращения образования и удаления льда с композитных конструктивных элементов. Для предотвращения и удаления льда поверхности, подверженные обледенению, нагревают до температуры таяния льда. Конструктивные элементы покрывают несколькими слоями, сначала элктротеплоизолирующим слоем, затем слоем из нагревательных элементов из электропроводящих полимерных материалов, затем гидрофобной электроизолирующей фторопластовой пленкой. Управляют нагревом на основании данных датчиков. Устройство предотвращения и удаления льда содержит блок управления, источник тока, коммутирующие элементы, датчики, расположенные на элементах конструкции. Обеспечивается удаление льда с конструктивных элементов и предотвращение образования барьерного льда. 2 н.п. ф-лы, 1 ил.

Данное изобретение относится к области создания беговых лыж для конькового хода. Решаемая техническая задача изобретения заключается в создании скользящей поверхности с высокой эффективностью скольжения в широком диапазоне внешних условий и со специальной механической обработкой части скользящей поверхности для предотвращения бокового соскальзывания, улучшения управляемости беговых лыж и достижения высоких результатов соревнований. Решаемая техническая задача в конструкции беговых лыж для конькового хода, содержащих грузовую площадку, скользящую поверхность и направляющие на скользящей поверхности, достигается тем, что направляющие расположены на части скользящей поверхности, примыкающей к внутреннему канту беговых лыж, вдоль оси лыжи от носка до пятки, имеют высоту на уровне скользящей поверхности и глубина направляющих увеличивается от внутреннего канта беговых лыж к ее оси. 4 ил.

Изобретение относится к области авиации, в частности к конструкциям комбинированных летательных аппаратов. Летательный аппарат содержит обтекатель втулки несущего винта, выполненный в виде несущего корпуса либо крыла малого удлинения с профилем, часть контура верхней поверхности которого близка к дуге окружности, а распределение хорды крыла вдоль размаха выбрано таким образом, что указанная часть контура профиля образует сегмент сферы, причем этот сегмент выполнен вращающимся и лопасти несущего винта закреплены на нем, а остальная часть обтекателя втулки выполнена неподвижной. Для упрощения режимов перехода лопасти устанавливают с отрицательным углом конусности. Вращающаяся часть обтекателя втулки имеет радиус 0,25÷0,5 радиуса несущего винта, а неподвижная часть обтекателя снабжена средствами повышения подъемной силы, например механизацией в виде закрылков. Лопасти несущего винта имеют профиль с относительной толщиной 5…20% хорды, симметричный относительно передней и задней кромок. Упрощенный вариант обтекателя втулки может быть выполнен в виде тела вращения, образованного поворотом аналогичного профиля относительно оси его симметрии. Достигается увеличение коэффициента полезного действия несущей системы на режиме висения. 2 н. и 10 з.п. ф-лы, 9 ил.

Изобретение относится к области создания спортивных снарядов со скользящей поверхностью и направлено на снижение отслаивания скользящего слоя от основания спортивного снаряда. Устройство спортивного снаряда со скользящей поверхностью, содержащее твердый монолитный материал в качестве скользящего покрытия. Устройство содержит основание спортивного снаряда, к которому посредством клеевого соединения приклеивается лента монолитного скользящего покрытия из фторопласта, имеющая две различные по своим свойствам поверхности, первая подклеиваемая к основанию спортивного снаряда поверхность модифицирована за счет образования на ней тонкого слоя полимера другого химического состава, вторая внешняя рабочая сторона ленты монолитного покрытия из фторопласта остается немодифицированной и обеспечивает высокую эффективность скольжения спортивного снаряда по поверхности. 3 з.п. ф-лы, 1 ил.

Группа изобретений относится к смешению двух многофазных газовых потоков и может быть использована в химической промышленности, например, при синтезе полимерных порошков, а также в фармацевтической и пищевой отраслях промышленности. Способ включает формирование двух многофазных газовых потоков, последующую ионизацию каждого из газовых потоков раздельно и заряд частиц газовых потоков противоположными по знаку зарядами. Два многофазных газовых потока противоположно заряженных частиц смешивают в камере смешения путем создания в камере смешения аксиального магнитного поля, величину вектора напряженности магнитного поля регулируют, за счет чего обеспечивают контроль процесса смешения двух многофазных газовых потоков разноименно заряженных частиц. Устройство содержит редукторы для двух газов, распылители частиц, ионизаторы. Камера смешения совмещена с устройством создания магнитного поля. Технический результат состоит в повышении степени контроля процесса смешения двух многофазных газовых потоков разноименно заряженных частиц и в обеспечении характерного времени смешения меньше характерного времени жизни возбужденных при ионизации частиц. 2 н. и 2 з.п. ф-лы, 2 ил.

Изобретение относится к вариантам способа получения порошка капсулированного полимерного материала

 


Наверх