Патенты автора Подавалов Владлен Борисович (RU)

Заявлен способ разработки нефтяных залежей системой вертикальных и горизонтальных скважин. Техническим результатом является повышение нефтеотдачи нефтяных залежей. Способ включает последовательное разбуривание залежи вертикальными, наклонно-направленными и горизонтальными скважинами по сетке. Применение оборудования для одновременно-раздельной эксплуатации, отбор продукции из скважин. Сетку скважин формируют из элементов, каждый элемент состоит из одной центральной вертикальной или наклонно-направленной добывающей скважины, от которой в радиусе R1=S=250-500 м размещают шесть точек с расстоянием S между собой - точки входа в пласт скважин I ряда. Затем от центральной скважины размещают контур окружности радиусом R2=2S, в местах пересечений данного контура окружности R2 с контурами окружностей радиусом S от точек входа в пласт скважин I ряда получают точки забоя скважин I ряда, соединяя соответствующие точки входа в пласт и точки забоя скважин I ряда получают шесть горизонтальных добывающих скважин I ряда длинами S стволов. От центральной скважины к точкам, полученным на пересечении окружностей, построенных от точек входа в пласт скважин I ряда, проводят в радиальном направлении линии. В местах пересечения данных линий с контуром окружности R2 получают расположение точек входа в пласт шести вертикальных и/или наклонно-направленных нагнетательных скважин II ряда. От центральной скважины размещают контур окружности радиусом R3=3S проводят проекцию направлений стволов горизонтальных скважин I ряда до контура окружности R3 и получают точки пересечения, на которых в свою очередь очерчивают контуры радиусом S и в местах пересечений данных контуров окружностей радиусом S c контуром окружности R3 получают точки, наиболее близко расположенные из которых соединяют, и получают шесть горизонтальных добывающих скважин III ряда длинами S стволов. В местах пересечения проекций направлений стволов горизонтальных скважин III ряда получают точки входа в пласт шести вертикальных и/или наклонно-направленных нагнетательных скважин III ряда. В соответствии с полученной схемой элемента бурят центральную скважину и все скважины I, II и III рядов. Аналогичным образом на залежи бурят остальные элементы, причем III ряд скважин каждого элемента является общим для смежных элементов. 10 ил.

Изобретение относится к нефтедобывающей промышленности и может найти применение при разработке многопластовых залежей нефти. Технический результат - повышение нефтеотдачи многопластовой нефтяной залежи. По способу осуществляют подбор многопластовой залежи. На выбранной залежи осуществляют бурение скважин по сетке. Уплотняют сетку скважин. Размещают горизонтальные стволы скважин в радиальном направлении. При этом залежь разбуривают вертикальными скважинами с расстоянием между скважинами 500-2000 м. Устье каждой из вертикальных скважин размещают на отдельной площадке. Выбирают одну из площадок и в радиальном направлении от соответствующей вертикальной скважины данной площадки бурят не более 20 горизонтальных скважин. Горизонтальные стволы в продуктивном пласте выполняют длиной по 150-1500 м. В плане эти стволы располагают под углом 10-180° друг к другу. В профиль каждый из горизонтальных стволов размещают в пласте с наибольшей эффективной нефтенасыщенной толщиной. Этим достигают максимально возможный охват пластов как по площади, так и по толщине. Аналогичные операции проводят на всех площадках, разбуривая залежь горизонтальными скважинами в радиальном направлении от соответствующих вертикальных скважин. В каждом из пластов минимальное расстояние в плане между горизонтальными стволами скважин соседних площадок составляет 250 м. Регулировку выработки запасов нефти осуществляют с применением одновременно-раздельной эксплуатации - ОРЭ между соответствующими пластами. Порядок применения ОРЭ, на каких пластах и в какое время, определяют с помощью гидродинамического моделирования разработки и выбора наилучшего сценария выработки запасов. 1 ил.
Изобретение относится к нефтяной промышленности и может быть применено для обработки призабойной зоны добывающей скважины. Способ включает срыв насоса с опоры с применением автокрана на шасси автомобиля, обеспечивая тем самым прохождение жидкости в полости насосно-компрессорных труб (НКТ), закачку расчетного объема углеводородного растворителя по НКТ в призабойную зону пласта. Далее с применением автокрана производится посадка насоса в опору, после чего производится дренирование углеводородного растворителя в призабойной зоне пласта при помощи ГНО, после чего в такой же последовательности производится закачка и дренирование технических растворов с кислот, далее скважина оставляется на реагирование кислотного состава. После выдерживания скважины на реагирование скважину запускают в работу существующим ГНО с отбором жидкости на желобную емкость с последующей нейтрализацией продуктов реакции кислоты до Рh пласта. Технический результат заключается в повышении эффективности интенсификации добычи нефти и газа.
Изобретение относится к нефтедобывающей промышленности и позволяет решить задачу повышения нефтеотдачи неоднородных по проницаемости нефтяных коллекторов. Способ разработки нефтяных коллекторов закачкой воды с изменяющимися свойствами включает циклическое повышение и снижение давления закачки рабочего агента в нагнетательных скважинах, применение в качестве рабочих агентов высоко- и низкоминерализованной вод, отбор продукции из добывающих скважин. Изначально выбирают неоднородный участок нефтенасыщенного коллектора с разбросом проницаемости не менее чем 30%, при условии, что в порах имеются способные к миграции глинистые частицы, при воздействии на которые низкоминерализованной водой проницаемость коллектора снижается не менее чем в 3 раза. Низкоминерализованную воду используют с поверхностных водоемов – рек, озер, морей, которую предварительно обеззараживают и фильтруют. В качестве высокоминерализованной используют пластовую воду. Первоначально в нагнетательную скважину в течение 10-100 суток осуществляют закачку высокоминерализованной воду. Затем начинают поэтапное снижение минерализации закачиваемой воды – от высокоминерализованной воды до низкоминерализованной воды, причем последовательность снижения осуществляют добавлением низкоминерализованной воды в высокоминерализованную и замещением на каждом последующем этапе на 10-20%, 20-40%, 40-60%, 60-80% и 80-100%. Продолжительность каждого этапа составляет 5-20 суток. Затем в той же последовательности и с той же продолжительностью этапов замещают низкоминерализованную воду на высокоминерализованную воду. Циклы увеличения-уменьшения минерализации закачиваемой воды повторяют многократно. При этом в каждом последующем цикле снижения минерализации повышают давление нагнетания, а в каждом последующем цикле увеличения минерализации закачиваемой воды снижают давление нагнетания. Предлагаемый способ позволяет повысить коэффициент нефтеизвлечения неоднородных по проницаемости нефтяных коллекторов за счет применения закачки воды с изменением ее минерализации. 2 пр.

Изобретение относится к нефтяной промышленности и может найти применение при разработке залежей нефти. Технический результат - снижение обводненности и повышение объема добычи нефти. Способ включает выбор добывающей скважины, закачку малосольной воды в течение не менее пяти суток в нагнетательную скважину, перевод этой скважины на закачку сточной или пластовой воды с расходом до проведения мероприятия. Циклы закачки малосольной воды в нагнетательную скважину повторяют при росте обводненности добывающей скважины на 10-30% относительно обводненности после проведения предыдущего цикла закачки. Объем закачки малосольной воды в каждом последующем цикле увеличивают. Выбирают несколько добывающих скважин, расположенных на расстояниях не более 500 м от нагнетательной скважины. Закачку малосольной воды в нагнетательную скважину осуществляют в импульсном режиме и при работающих выбранных скважинах. Отключают устройство для импульсной закачки жидкости в пласт. Нагнетательную скважину переводят на закачку сточной или пластовой воды. Циклы закачки малосольной воды в нагнетательную скважину повторяют при отключенном устройстве для импульсной закачки жидкости и при росте обводненности, хотя бы в одной добывающей скважине, на 10-30% относительно обводненности после проведения предыдущего цикла закачки. В качестве устройства для импульсной закачки жидкости применяют гидравлический вибратор золотникового типа. Вибратор содержит полый ствол и золотник, которые выполнены с щелевыми прорезями. Для отключения гидравлического вибратора в его стволе над золотником просверливают радиальные отверстия. Отверстия сообщают между собой полости ствола и скважины. В полость ствола напротив радиальных отверстий и над щелевыми прорезями, с фиксацией от осевого перемещения, устанавливают полый шток. Шток выполняют с кольцевым выступом на нижнем конце внутренней стенки. Шток перекрывает щелевые прорези ствола при перемещении его вниз под радиальные отверстия. Полый шток перемещают давлением сточной или пластовой воды, закачиваемой в пласт после сброса в скважину шарика. Наружный диаметр шарика выбирают меньше внутреннего диаметра полого штока и больше внутреннего диаметра кольцевого выступа этого штока. 5 ил.

Изобретение относится к нефтедобывающей промышленности и может быть применено для разработки нефтяной залежи с несколькими объектами, совпадающими в структурном плане, коллектора которых относятся к трудноизвлекаемым запасам нефти. Способ включает бурение скважин по сетке, уплотнение сетки скважин, бурение боковых горизонтальных стволов, отбор продукции из скважин. Согласно изобретению в наиболее повышенной части структуры многопластовой залежи бурят одну вертикальную или наклонно-направленную скважину, затем от данной скважины проводят две-три условные окружности, первая из которых имеет радиус 100-300 м, а каждая последующая окружность отстоит от предыдущей на 100-300 м, вдоль окружностей на равном расстоянии друг от друга бурят соответственно две-три группы по 6-8 вертикальных и/или наклонно-направленных скважин. Причем точки входа в пласты скважин находятся на линии окружностей. В целом скважины одной группы относительно другой размещают с достижением максимального охвата залежи по площади, все скважины бурят до нижнего пласта. При этом вторичное вскрытие осуществляют по пласту с наименьшей проницаемостью коллектора, после снижения дебита нефти одной из скважин до значения менее 1 т/сут данную скважину переводят на пласт с наибольшей проницаемостью, при последующем снижении дебита нефти данной скважины до значения менее 1 т/сут ее переводят на одновременно-раздельную эксплуатацию оставшихся пластов, причем в один из оставшихся пластов осуществляют зарезку бокового горизонтального ствола длиной 200-600 м в радиальном направлении от первоначальной центральной скважины, аналогичные операции выполняют по всем скважинам. Боковой горизонтальный ствол не бурят в первоначальной центральной скважине. Технический результат заключается в повышении нефтеотдачи нефтяной залежи. 1 ил.

Изобретение относится к нефтедобывающей промышленности, в частности к способам обработки призабойной зоны добывающей скважины или скважины, переведенной в нагнетательную из добывающей скважины, работа которых осложнена выпадением парафиновых асфальто-смолистых веществ (АСВ) в призабойной зоне. Способ обработки призабойной зоны скважины для удаления парафиновых асфальто-смолистых веществ включает закачку в призабойную зону композиционного состава из 5,0-30,0 мас.% сорастворителя с поверхностно-активным веществом - ПАВ и 70,0-95,0 мас.%, технологическую выдержку. При этом в композиционном составе в качестве сорастворителя используют кубовые остатки бутиловых спиртов или растворитель парафиновый нефтяной, или сольвент нефтяной, в качестве ПАВ используют комплексный ПАВ или простой полиэфир с низкой температурой застывания, в качестве растворителя используют растворитель промышленный. Причем количество ПАВ в сорастворителе составляет 0,05-0,2 мас.%. Причем для скважин с приемистостью от 0 до 1 м3/ч закачку композиционного состава проводят при постоянной работе гидравлического генератора. Техническим результатом является увеличение эффективности очистки порового пространства призабойной зоны скважины от парафиновых АСВ за счет повышения растворяющей и диспергирующей способностей композиционного состава в отношении парафиновых АСВ, повышение производительности скважины за счет полного растворения и удаления парафиновых АСВ из призабойной зоны скважины и расширение технологической возможности способа за счет применения реагентов с привлечением отходов нефтехимического производства. 3 табл.
Изобретение относится к нефтедобывающей промышленности. Технический результат - расширение области применения технологии за счет реагентов, устойчивых к высоким температурам, с одновременным снижением стоимости обработки за счет снижения количества используемой техники. Способ термопенокислотной обработки прискважинной зоны карбонатного коллектора включает в себя одновременную закачку кислотного и газогенерирующего составов по двум отделенным друг от друга каналам с последующей их продавкой в пласт. В качестве газогенерирующего состава используют водный раствор мочевина с нитритом натрия, содержащий, мас.%: мочевину 28,4-38,4; нитрит натрия 18,2-27,6;вода остальное. В качестве кислотного состава - водный раствор неорганической кислоты с добавками. При этом в кислотном составе в качестве неорганической кислоты применяют водный раствор соляной кислоты 19-26%-ной концентрации, а в качестве добавок - 2-алкилимидазолин в концентрации 5-15 мас.% и фосфористую кислоту в концентрации 0,5-2,5 мас.%. Объем кислотного состава составляет 1-3 м3 на погонный метр интервала обработки для вертикальных скважин и 0,1-0,2 м3 - для горизонтальных скважин. Составы продавливают жидкостью глушения или товарной нефтью в объеме полости закачиваемых каналов плюс 3-5 м3 с последующим закрытием скважины на 4-12 часов для реагирования кислотного состава. 3 з.п. ф-лы, 2 пр.

Изобретение относится к нефтедобывающей промышленности и позволяет решить задачу повышения нефтеотдачи плотных нефтяных коллекторов циклической закачкой углекислого газа. Способ включает циклическое повышение и снижение давления закачки рабочего агента в нагнетательных скважинах, применение в качестве рабочего агента углекислого газа и отбор продукции из добывающих скважин. Изначально выбирают участок коллектора с разбросом проницаемости от 0,001 мД до 2 мД, с расположенной в центре нагнетательной скважиной и с текущим пластовым давлением, равным (0,5-0,8)·Р(нач). Закачку СО2 ведут через коррозионно-устойчивые трубы с постепенным повышением расхода в нагнетательной скважине от нуля до значения, при котором давление закачки равно (0,7-0,9)·Р(гор). При этом одновременно повышают забойное давление в добывающих скважинах от давления насыщения нефти углеводородным газом до текущего пластового давления, при котором прекращается приток жидкости к скважинам. После этого расход газа уменьшают до значения, при котором давление закачки равно Р(нач). В добывающих скважинах в течение данного времени забойное давление снижают до Р(нас). Циклы закачки газа повторяют до момента восстановления текущего пластового давления до (0,9-1,1)·Р(нач). После завершения циклов останавливают закачку СО2, добычу ведут через добывающие скважины при забойном давлении выше Р(нас) нефти СО2 или углеводородным газом. Предлагаемый способ позволяет повысить коэффициент нефтеизвлечения плотных нефтяных коллекторов за счет комплексного применения циклической закачки углекислого газа и регулирования режима работы добывающих скважин. 1 ил., 1 пр.

Изобретение относится к нефтедобывающей промышленности. Технический результат - повышение нефтеотдачи слабопроницаемых карбонатных коллекторов. В способе разработки слабопроницаемых коллекторов периодичной закачкой углекислого газа выбирают скважины с горизонтальным окончанием диаметром ствола 5-7 дюймов, вскрывающие коллектор со средней абсолютной проницаемостью от 0,001 мД до 2 мД, либо бурят из вертикальных скважин, вскрывших коллектор с указанной проницаемостью, боковые горизонтальные стволы. Все скважины выполняют добывающими. В каждую из скважин в центральную часть горизонтального ствола спускают на основной колонне труб насос, через который осуществляют отбор продукции, после периода эксплуатации и достижения условия qж ≤ 0,5·qж0 при Рнас≤ Pз ≤ 0,3·Рпл0, где qж – текущий дебит жидкости скважины, qж0 – начальный дебит жидкости после пуска скважины в добычу перед соответствующим циклом отбора - закачки, Pз – текущее забойное давление, Рпл0 – начальное пластовое давление, Рнас – давление насыщения нефти углеводородным газом, в горизонтальный ствол скважины спускают дополнительную колонну труб диаметром 1-2 дюйма с фильтром, длиной не менее половины длины горизонтального ствола. Дополнительную колонну труб запакеровывают выше кровли продуктивного пласта, причем при необходимости основную колонну труб меняют на колонну такого диаметра, при которой возможно проведение спускоподъемных операций каждой из колонн труб по отдельности. Через дополнительную колонну труб закачивают рабочий агент, в качестве которого используют углекислый газ – СО2, закачку СО2 ведут с постепенным увеличением расхода от 0 до qзакmax, где qзакmax – максимальный расход СО2 при давлении закачки Pзак = (0,6-0,9)·Pгорн, где Pгорн – вертикальное горное давление, при достижении qзакmax закачку прекращают и скважину оставляют на перераспределение давления в коллекторе на 5-50 сут. После чего пускают в добычу через дополнительную колонну труб, причем дебит жидкости повышают постепенно с 0 до (0,5-0,9)·qдобmax, где qдобmax – максимальный дебит жидкости при забойном давлении, равном Рнас, циклы закачки, ожидания и отбора повторяют. 1 ил., 1 пр.

Изобретение относится к нефтедобывающей промышленности и может быть применено для разработки мощных плотных карбонатных залежей нефти с применением многостадийного гидравлического разрыва пласта (МГРП) в режиме кислотно-гравитационного дренирования (КГД). Способ включает бурение скважин с горизонтальным окончанием - СГО, цементирование в горизонтальном стволе кольцевого пространства между обсадной колонной и коллектором, вторичное вскрытие залежи с ориентированным направлением перфорационных отверстий в один ряд, проведение МГРП, применение пакеров для разделения горизонтальных стволов на участки, отбор продукции из горизонтальных скважин. Согласно изобретению, выбирают залежь со средней толщиной нефтенасыщенного коллектора H ≥ 50 м и средней абсолютной проницаемостью не более 2 мД, залежь разбуривают парами СГО, стволы которых располагают параллельно в вертикальной плоскости на расстоянии по вертикали h = (0,5-0,9)·Н, причем верхнюю СГО выполняют с двумя расходящимися под углом β = 30-60° горизонтальными стволами, нижнюю СГО выполняют с одним горизонтальным стволом, направленным перпендикулярно вектору главного максимального напряжения коллектора и являющимся биссектрисой угла β в плане. Длину каждого горизонтального ствола выполняют равной l ≥ 4·h. В верхней СГО в каждом горизонтальном стволе перфорационные отверстия ориентируют вниз, а в горизонтальном стволе нижней СГО – вверх. Во всех скважинах проводят кислотный МГРП с расстоянием между ступенями не более 50 м. Причем местоположение каждой соответствующей ступени МГРП в верхней и нижней скважинах не совпадает в структурном плане. Скорость и объем закачиваемой кислоты определяют из условий, во-первых, образования структуры растворения карбонатов, представляющей из себя разветвленные полости, во-вторых, полудлиной трещин a = (0,2-1,0)·l·sin(β/2) и высотой трещин с = (0,5-1,0)·h. После МГРП нижние СГО осваивают и пускают в добычу. При каждом снижении дебита нефти нижних добывающих скважин ниже экономически рентабельного значения в соответствующих верхних нагнетательных скважинах проводят большеобъемные кислотные обработки. Причем перед подачей кислоты в нагнетательную скважину закачивают воду c общей минерализацией не более 1 г/л и частицами, устойчивыми к воздействию применяемых кислот, с диаметрами, превышающими средний диаметр поровых каналов коллектора, воду с частицами закачивают до тех пор, пока давление закачки не вырастит как минимум в пять раз, таким образом, залежь разрабатывают в режиме КГД. Технический результат заключается в повышении нефтеотдачи мощных плотных карбонатных залежей нефти. 2 ил.
Изобретение относится к нефтедобывающей промышленности. Техническим результатом является повышение нефтеотдачи нефтематеринских отложений. Способ разработки нефтематеринских отложений включает выбор месторождения, нефтематеринские отложения которого имеют среднюю абсолютную проницаемость менее 2 мД. Скважины используют уже пробуренные, либо бурят новые. Все скважины выполняют добывающими. Скважину переводят под закачку рабочего агента после выполнения условия на одной из скважин qж < 0,3·qж0 при Pз < 0,3·Рпл0, где qж – текущий дебит жидкости скважины, qж0 – начальный дебит жидкости после пуска скважины в добычу перед соответствующим циклом отбора - закачки, Pз – текущее забойное давление, Рпл0 – начальное пластовое давление. В качестве рабочего агента используют углекислый газ – СО2, закачку которого ведут с постепенным увеличением расхода от 0 до qзакmax, где qзакmax – максимальный расход СО2 при давлении закачки Pзак = (0,8-1,0)·Pгорн, где Pгорн – вертикальное горное давление. При достижении qзакmax закачку прекращают и скважину останавливают на перераспределение давления в коллекторе на 10-100 сут., после чего скважину пускают в добычу, циклы закачки и отбора повторяют. Аналогичные операции проводят на всех скважинах месторождения. 6 пр.
Изобретение относится к нефтедобывающей промышленности. Техническим результатом является повышение нефтеотдачи нефтематеринских карбонатных коллекторов. Способ разработки нефтематеринских карбонатных коллекторов включает бурение, освоение и отбор продукции из скважин, определение приемистости скважин. Выбирают нефтематеринский карбонатный коллектор со средней абсолютной проницаемостью менее 2 мД. Все скважины выполняют добывающими с горизонтальным окончанием. В горизонтальных стволах проводят многостадийный гидроразрыв пласта, после достижения условия на одной из скважин qж < 0,3·qж0 при Pз < 0,3·Рпл0, где qж – текущий дебит жидкости скважины, qж0 – начальный дебит жидкости после пуска скважины в добычу перед соответствующим циклом отбора - закачки, Pз – текущее забойное давление, Рпл0 – начальное пластовое давление, данную скважину переводят под закачку рабочего агента с постепенным увеличением расхода от 0 до qзакmax, где qзакmax – максимальный расход смеси при давлении закачки Pзак = (0,5-1,0)·Pгорн, где Pгорн – вертикальное горное давление. В качестве рабочего агента используют смесь кислоты с первоначальной концентрацией 15-24%, поверхностно-активных веществ – ПАВ с концентрацией 0,2-1,0% и воды с общей минерализацией не более 1,5 г/л – остальное. Во время закачки концентрацию кислоты постепенно снижают до нуля. Соотношение данных компонентов типа ПАВ, кислоты и скорости снижения концентрации кислоты определяют исходя из лабораторных экспериментов по подбору состава, показавших наибольший коэффициент вытеснения нефти на кернах. При достижении qзакmax закачку прекращают и скважину останавливают на перераспределение давления в коллекторе на 10-100 сут, после чего скважину пускают в добычу, циклы закачки и отбора повторяют. Аналогичные операции проводят на всех скважинах нефтематеринского карбонатного коллектора. 3 пр.

Изобретение относится к нефтяной промышленности и может найти применение при освоении и восстановлении дебита эксплуатационных скважин, в частности, для интенсификации притоков пластовых флюидов

Изобретение относится к нефтяной промышленности и может найти применение при освоении и восстановлении дебита эксплуатационных скважин, в частности для интенсификации притоков пластовых флюидов

Изобретение относится к нефтяной промышленности и может найти применение при разработке нефтяной залежи

Изобретение относится к нефтяной промышленности и может найти применение при приготовлении технологической жидкости при ремонтных работах на нагнетательной скважине
Изобретение относится к нефтяной промышленности и может найти применение при разглинизации призабойной зоны скважины
Изобретение относится к нефтяной промышленности и может найти применение при водоизоляционных работах в скважине

Изобретение относится к нефтяной промышленности и может найти применение при эксплуатации нефтяных скважин

Изобретение относится к нефтяной промышленности и может найти применение при эксплуатации нефтяных скважин

Изобретение относится к нефтедобывающей промышленности и может найти применение при отборе скважинной жидкости, преимущественно в случаях, когда необходимо восстановить дебит пласта в сильно загрязненных скважинах или при освоении скважин, вышедших из бурения

 


Наверх