Патенты автора Сучилин Владимир Алексеевич (RU)

Изобретение относится к автономным системам снабжения тепловой и электрической энергией индивидуальных жилых домов с использованием солнечных коллекторов, солнечных батарей и тепловых насосов типа грунт-вода. Система электроснабжения содержит солнечную фотоэлектрическую батарею (17) с системой охлаждения фотоэлектрических преобразователей (18), которая представляет собой одну или несколько герметичных полостей (20), расположенных в корпусе (21) солнечной батареи и заполненных теплоаккумулирующим веществом. Тепловыводящие элементы (22) фотоэлектрических преобразователей (18) погружены в это теплоаккумулирующее вещество. Внутри герметичных полостей (20) имеются также теплообменники (23) для охлаждения теплоаккумулирующего вещества, соединенные трубопроводами (28 и 29) со вспомогательным грунтовым теплообменником (3) так, что образуется замкнутый контур для циркуляции антифриза. Система автономного энергоснабжения также содержит дополнительную емкость (12) для обеспечения возможности теплообмена между жидким теплоносителем в контуре солнечного коллектора (9) и антифризом в контуре вспомогательного грунтового теплообменника (3). Технический результат - повышение надежности и эффективности работы системы энергоснабжения. 3 ил.

Изобретение относится к системам отопления и горячего водоснабжения на основе тепловых насосов, использующих тепло низкотемпературных источников естественного или искусственного происхождения. Электродвигатель привода компрессора расположен в теплоизолирующем кожухе, содержащем дополнительную герметичную полость, соединенную трубопроводами с теплообменником внешнего грунтового контура ТНУ и испарителем ТНУ так, что образуется замкнутый контур для циркуляции антифриза. Техническим результатом является повышение эффективности работы ТНУ и повышение надежности работы компрессора ТНУ. 1 ил.

Изобретение относится к теплонасосным установкам, используемым для автономного отопления и горячего водоснабжения помещений. Задачей предложенного изобретения является повышение эффективности работы системы отопления дома на основе теплового насоса, использующего энергию фазового перехода воды в лед. Указанная задача решается за счет того, что система отопления жилого дома, содержит тепловой насос, а также соединенный с испарителем теплового насоса внешний грунтовый контур с жидким антифризом в плоским теплообменнике, находящемся в расположенной в грунте вне дома первой герметичной емкости, в которой находится система вода-лед-вода, причем верхняя стенка плоского теплообменника выполнена в виде тонкостенной упругой деформируемой мембраны, а на выходе из плоского теплообменника имеется электромагнитный клапан для периодического прерывания циркуляции антифриза по внешнему грунтовому контуру. В непосредственной близости от первой емкости дополнительно имеется вторая герметичная емкость с водой, а в этой емкости расположен соединенный с источником внешней энергии нагреватель воды, причем вторая емкость соединена трубопроводами с первой емкостью таким образом, что образуется замкнутый контур для циркуляции воды. В верхней части первой емкости установлена перфорированная перегородка для обеспечения равномерного распределения нагретой воды, поступающей из второй емкости. На входе в испаритель теплового насоса дополнительно имеется ресивер для выравнивания давления антифриза, а на наружной поверхности верхней деформируемой стенки плоского теплообменника установлен датчик контроля толщины слоя льда. 8 з.п. ф-лы, 1 ил.

Изобретение относится к системам отопления с тепловыми насосами, использующими тепло низкотемпературных источников для автономного отопления и горячего водоснабжения. Задачей предложенного изобретения является обеспечение эффективности работы ТНУ компрессионного типа с горизонтальным грунтовым внешним контуром путем регулярного восстановления теплового баланса грунта в зоне теплообменника внешнего грунтового контура, а также повышение надежности работы компрессора ТНУ за счет улучшения условий смазки и охлаждения деталей компрессора. Это достигается за счет того, что теплонасосная установка содержит тепловой насос с испарителем, конденсатором, расширительным вентилем и помещенным в герметичный кожух компрессором, а также внешний горизонтальный контур с основным грунтовым трубчатым теплообменником, а также автоматический контроллер для управления работой теплонасосной установки, и отличается тем, что, с целью восстановления теплового потенциала грунта, внешний горизонтальный контур дополнительно содержит вспомогательный трубчатый грунтовый теплообменник, размещенный в грунте непосредственно под основным грунтовым теплообменником, а в герметичном кожухе компрессора дополнительно имеется замкнутая полость, соединенная трубопроводами с вспомогательным грунтовым теплообменником так, что образуется замкнутый контур для циркуляции технологического жидкого теплоносителя, а в составе теплонасосной установки имеется дополнительный гидравлический насос для обеспечения циркуляции технологического жидкого теплоносителя. 7 з.п. ф-лы, 3 ил.

Изобретение относится к компрессорной технике и может быть использовано для совершенствования конструкций поршневых компрессоров с шатунно-поршневой группой, предназначенных для сжатия различных газообразных рабочих сред. Поршневой компрессор содержит цилиндр, камеру сжатия, клапанную головку, поршень, коленчатый вал с двумя шатунными шейками. Первый шатун шарнирно соединен с шатунной шейкой коленчатого вала. Для обеспечения периодического ускоренного движения поршня, дополнительно содержит второй шатун, а также ведущий вал с жестко соединенным с ним кривошипом. Второй шатун одним концом шарнирно соединен со свободной шатунной шейкой коленчатого вала, а другим концом шарнирно соединен с кривошипом. Ведущий вал через муфту соединен с валом электродвигателя. Ось ведущего вала расположена параллельно оси коленчатого вала в горизонтальной плоскости. Для обеспечения работоспособности конструкции размеры звеньев поршневого компрессора должны соответствовать определенным требованиям. В компрессоре циклически изменяется скорость поршня на различных стадиях рабочего цикла при постоянной скорости вращения привода компрессора, что позволяет повысить эффективность работы поршневого компрессора за счет снижения утечек рабочего тела через зазоры между поршнем и цилиндром. 2 ил.

Изобретение относится к стендам для проведения термодинамических исследований эффективности работы тепловых насосов. Испаритель, компрессор, конденсатор, регулирующий вентиль, теплообменник-охладитель хладагента, установленный между конденсатором и регулирующим вентилем расположены последовательно. Внешний контур с емкостью для низкопотенциального теплоносителя выполнен с возможностью регулирования температуры низкопотенциального теплоносителя. Внутренний контур с емкостью для высокопотенциального теплоносителя выполнен с возможностью регулирования температуры высокопотенциального теплоносителя. С целью регулирования температуры хладагента на входе в компрессор, стенд дополнительно содержит теплообменник-перегреватель хладагента, установленный между испарителем и компрессором. Техническим результатом является обеспечение возможности регулирования и управления параметрами теплоносителя как на выходе из конденсатора, так и на выходе из испарителя теплового насоса с целью экспериментального исследования влияния этих параметров хладагента на эффективность работы бытовых тепловых насосов. 6 з.п. ф-лы, 1 ил.

Изобретение относится к системам отопления с тепловыми насосами, использующим тепло низкотемпературных источников естественного или искусственного происхождения для получения воды, пригодной для автономного отопления и горячего водоснабжения в жилых домах. Задачей изобретения является повышение эффективности теплонасосной системы компрессионного типа, работающей по схеме грунт-вода для отопления помещений и горячего водоснабжения. Это достигается за счет того, что теплонасосная установка содержит тепловой насос, включающий узел испарителя, узел конденсатора, компрессор и расширительный вентиль, а также внешний горизонтальный грунтовый контур с грунтовым теплообменником, внутренний контур с отопительными приборами и солнечный коллектор с теплообменником и баком для горячей воды, и отличается тем, что грунтовый теплообменник внешнего горизонтального грунтового контура выполнен в виде блока из коаксиально расположенных труб, по которым циркулируют жидкие теплоносители, причем внутренние трубы грунтового теплообменника подсоединены к узлу теплообменника солнечного коллектора, а наружные трубы грунтового теплообменника подсоединены к узлу испарителя теплового насоса. 7 з.п. ф-лы, 4 ил.

Изобретение относится к теплонасосным установкам, использующим низкотемпературное тепло грунта для автономного отопления и горячего водоснабжения помещений. Внешний грунтовый контур для теплонасосной установки содержит помещенный в грунт горизонтальный трубчатый теплообменник, соединенный трубопроводами с теплообменником-испарителем теплового насоса с циркулирующим в нем низкотемпературным теплоносителем-рассолом, а также аккумулятор тепловой энергии, предназначенный для подогрева грунта. Аккумулятор помещен в грунт в непосредственной близости от горизонтального трубчатого теплообменника и выполнен в виде двух емкостей, соединенных трубопроводами в единый контур, по которому циркулирует жидкий теплоноситель. В первой емкости происходит нагрев жидкого теплоносителя от помещенного в первую емкость нагревателя, а жидкий теплоноситель из первой емкости по подающим трубопроводам поступает во вторую емкость и снова возвращается по обратным трубопроводам в первую емкость. При этом происходит передача части тепловой энергии жидкого теплоносителя окружающему грунту через стенки подающих и обратных трубопроводов и через стенки первой и второй емкостей. Техническим результатом является обеспечение эффективности работы ТНУ компрессионного типа с горизонтальным грунтовым внешним контуром за счет восстановления теплового баланса грунта в зоне теплообменника внешнего грунтового контура. 13 з.п. ф-лы, 6 ил.

Изобретение относится к системам отопления с тепловыми насосами, использующими тепло низкотемпературных источников естественного или искусственного происхождения для получения воды, пригодной для автономного отопления и горячего водоснабжения помещений предприятий сферы ЖКХ и быта, а также дач и домов частного сектора. Каскадная теплонасосная установка, содержащая установленные перед потребителем тепла два последовательно соединенных тепловых насоса, образующих ступени каскада, причем испаритель первой ступени каскада включен в циркуляционный контур низкопотенциального источника тепла, а конденсатор второй ступени каскада включен в циркуляционный контур потребителя тепла, при этом она содержит дополнительный циркуляционный контур с технологическим среднетемпературным теплоносителем, причем конденсатор первой ступени каскада и испаритель второй ступени каскада включены в указанный дополнительный циркуляционный контур, а на выходе из испарителя второй ступени каскада содержит дополнительную емкость для перегрева насыщенного пара хладагента, а на выходе из конденсатора второй ступени каскада содержит дополнительную емкость для отбора избыточной теплоты хладагента, при этом часть избыточной теплоты, полученной при охлаждении хладагента в дополнительной емкости на выходе из конденсатора второй ступени каскада, утилизируется и используется для перегрева насыщенного пара хладагента в дополнительной емкости на выходе из испарителя второй ступени каскада. Результатом является повышение надежности и эффективности работы каскадной теплонасосной установки, построенной на базе типовых элементов тепловых насосов. 10 з.п. ф-лы, 1 ил.

Изобретение относится к системам отопления с тепловыми насосами, использующими тепло низкотемпературных источников для получения воды, пригодной для автономного отопления и горячего водоснабжения. Задачей предложенного изобретения является повышение эффективности автономной системы отопления и горячего водоснабжения помещений с тепловым насосом компрессионного типа, работающим по схеме грунт-вода, за счет более полного восстановления теплового потенциала грунта в зоне расположения наружного контура теплового насоса. Система отопления и горячего водоснабжения помещений, включающая компрессионный тепловой насос типа грунт-вода, внутренний контур теплового насоса с высокотемпературным теплоносителем, внешний контур теплового насоса с теплообменником с низкотемпературным теплоносителем, а также солнечный коллектор, емкость для горячего водоснабжения, блок управления тепловыми потоками системы, жидкостные насосы для перекачивания теплоносителей и воды горячего водоснабжения, при этом в грунте в непосредственной близости от теплообменника внешнего контура расположен постоянно действующий аккумулятор тепловой энергии, связанный трубопроводами с внешним контуром теплового насоса и с солнечным коллектором. 10 з.п. ф-лы, 4 ил.

Изобретение относится к холодильной технике, в частности к холодильникам компрессионного типа. Способ повышения энергоэффективности холодильников компрессионного типа заключается в том, что часть теплового потока с поверхности конденсатора утилизируется путем преобразования тепловой энергии в электрическую энергию, которая может быть накоплена в аккумуляторе и использована для питания дополнительного вентилятора обдува поверхности конденсатора, или для обеспечения работы холодильника при аварийном отключении электросети, или для обеспечения работы дополнительных устройств, повышающих уровень комфортности холодильника. Для преобразования тепловой энергии в электрическую могут использоваться многослойные пленочные термопары, которые крепятся к поверхности конденсатора с помощью фольговой пластины, или фольговая пластина может являться подложкой, на которой изготовлены многослойные пленочные термопары методом напыления тонких термопарных пленок. Техническим результатом является обеспечение перспективы совершенствования конструкции холодильников и создания новых моделей холодильников с повышенным КПД и более высоким уровнем комфортности. 5 з.п. ф-лы, 1 ил.

Изобретение относится к технологическому оборудованию, работающему в режиме частого пуска и останова. Механический привод содержит входной вал, приводную деталь, ведущее звено исполнительного механизма и съемную деталь в срединной части входного вала. Крутящий момент на входной вал передается от электродвигателя с помощью механической передачи и приводной детали. На обоих концах входного вала выполнены ступицы в форме профильной поверхности, а на приводной детали и на кривошипе выполнены отверстия такой же формы для выполнения неподвижной посадки их на входной вал. В срединной части входного вала выполнена ступень с подобной профильной поверхностью для установки съемной детали, причем съемная деталь имеет посадочное отверстие аналогичного профиля для выполнения неподвижной посадки ее на входной вал. Для предотвращения осевых смещений установленных на входной вал деталей они дополнительно зафиксированы с помощью технологий нанесения присадочных материалов. Достигается повышение стабильной жесткости и неподвижности крепления съемных деталей. 7 з.п. ф-лы, 5 ил.

Группа изобретений относится к легкой промышленности, в частности к определению механических характеристик швейных материалов и соединений деталей одежды (ниточных, сварных, клеевых и других швов и строчек). Способ для механических испытаний швейных материалов и соединений заключается в том, что, нагружая закрепленный на установке образец материала через объемный рабочий орган в виде пуансона полусферической формы, получают на регистрирующем средстве в виде осциллографа электрические сигналы от тензодатчиков, связанных через упругие элементы с испытуемым образцом, отражающие действующие силы на участках испытуемого образца по осям 0X, 0Y, 0Z, по которым судят о многоосной деформации образца материала, далее, зная размерные параметры образца материала, находят искомые напряжения, действующие на этих участках образца, причем искомые напряжения на образце материала определяют в динамике при действии непрерывного процесса изнашивания его при циклической нагрузке, путем сравнения напряжения в образце материала в начале цикла испытаний и в конце определяют влияние износа на механические характеристики испытуемого материала, а при использовании режима влажно-тепловой обработки перед нагружением в зону деформирования образца швейного материала пропускают пар через сквозные отверстия на всей рабочей поверхности пуансона. Также описана установка для реализации указанного способа. Достигается повышение надежности определения и качества швейных материалов. 2 н.п. ф-лы, 3 ил.

Заявленное изобретение относится к легкой промышленности, в частности к многооперационным швейным агрегатам, конкретно к агрегатам, выполняющим различные соединяющие швы и строчки. Агрегат с автоматической подачей швейных машин-модулей, согласно изобретению, предлагается с встроенным электродвигателем в структуру машин-модулей, не требующих стыковки с унифицированным механическим приводам, машины-модули подаются из накопителя многоярусного типа в виде механизированного стеллажа. Тем самым обеспечивается повышение производительности и высокая технологичность агрегата, обороты вала встроенного электродвигателя машин-модулей различного назначения регулируются изменением параметров электрического тока, максимально необходимая мощность тока встроенных электродвигателей различных по конструкции и назначению швейных машин-модулей задается от блока управления промстола агрегата. 5 з.п. ф-лы, 5 ил.

Изобретение относится к легкой промышленности, в частности к технологическому оборудованию для примерки одежды в процессе изготовления, и может быть использовано на швейных предприятиях, производящих разнообразную одежду на индивидуального потребителя

Изобретение относится к легкой промышленности и направлено на повышение эффективности работы производственной системы путем организации параллельного запуска однородной серии изделий и разнородной партии изделий

 


Наверх