Патенты автора Жукова Светлана Александровна (RU)

Изобретение относится к области инфракрасной техники и может быть использовано при изготовлении устройств, детектирующих излучение в инфракрасном диапазоне. Технический результат заключается в компенсации технологического разброса значений сопротивлений болометров в широком диапазоне температур без использования термостабилизирующих элементов и механического затвора (шторки) для калибровки в устройствах для регистрации инфракрасного излучения. Технический результат достигается введением системы раздельной компенсации технологического разброса электрических сопротивлений «активных» и «термозакороченных» болометров, что обеспечивает сохранение соотношения токов считывания и токов компенсации при изменении температуры кристалла, напряжений смещений или времени интегрировании. 2 з.п. ф-лы, 5 ил.

Изобретение относится к области измерительной техники и может найти применение для измерения слабых магнитных полей. Устройство для измерения слабых магнитных полей на основе эффекта гигантского магнитного импеданса содержит магниточувствительный элемент, выполненный из двух идентичных аморфных ферромагнитных микропроводов в стеклянной оболочке или с удаленной стеклянной оболочкой, размещенных внутри одной многовитковой катушки, причем высокочастотное возбуждение микропроводов осуществляется от многовитковой катушки, а регистрация сигналов с двух микропроводов осуществляется с помощью дифференциального усилителя. Технический результат – повышение точности измерений, уменьшение систематической ошибки выходного сигнала магнитометра в целом. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области детектирования электромагнитного излучения, в частности инфракрасного, на основе болометрических детекторов. Технический результат заключается в компенсации технологического разброса значений сопротивлений болометров матрицы в широком диапазоне температур без использования термостабилизирующих элементов, в устройствах для регистрации инфракрасного излучения. Для этого устройство содержит матрицу болометрических детекторов, состоящую из болометров, чувствительных к падающему инфракрасному излучению, называемых «активными», и нечувствительных к инфракрасному излучению болометров, называемых «термозакороченными», сформированных на полупроводниковой подложке, содержащей схему считывания, состоящую из множеств пар транзисторов различных типов проводимости, подключенных истоками к «активным» и «термозакороченным» болометрам соответственно, получающих некоторые напряжения смещения, с объединенными стоками, которые подключены к входам интеграторов, к которым с помощью набора ключей, управляемых цифровым кодом компенсации разрядности n, один из разрядов которого определяет знак тока компенсации, также подключены источники положительного и отрицательного тока компенсации, представляющих собой токовые зеркала с заданными коэффициентами умножения тока, которые мультиплицируют для каждого столбца и умножают с заданным коэффициентом ток, сформированный средством формирования опорного компенсационного тока на основе двух дополнительных «термозакороченных» болометров, расположенных вне поля матрицы, получающих смещения от транзисторов в точности идентичных транзисторам смещения «активных» и «термозакороченных» болометров и смещенных точно такими же напряжениями смещения. 3 ил.

Способ и устройство относятся к области повышения эффективности и безопасности при очистке, ремонте и замене стекол стеклянных крыш теплиц для производства овощей, цветов и плодов. Способ включает монтаж на наклонной поверхности крыши теплиц на стропилах форточного модуля. Модуль содержит опорную 1, форточную рамы 2 и стекольный блок 11. Форточная рама 2 имеет П-образную форму, крепится к опорной раме 1 с помощью петель 12, обеспечивающих ее открывание во внутреннее пространство теплицы до перпендикулярного положения относительно крыши теплицы, фиксируется защелками 13 и обеспечивает возможность извлечения из боковых сторон открытой форточной рамы стекольного блока 11 для обслуживания или ремонта. Устройство выполнено в виде стекольного блока 11 с форточной рамой 2, закрепленной на стропилах в опорной раме 1, по меньшей мере, двумя петлями 12. Петли 12 размещаются на внутренней стороне опорной рамы 1, которая снабжена фиксирующими задвижками и пазами с уплотнителем для герметичности форточного блока. Стекольный блок 11 снабжен внутренними и внешними пазами для герметичной фиксации стекольного блока внутри форточной рамы 2 П-образной формы, а стекла - внутри стекольного блока, при этом внешние пазы размещены на трех сторонах стекольного блока для обеспечения его горизонтального перемещения вправо или влево внутри форточного блока при открытой раме с усилием в 100-150 Н. Способ и устройство обеспечивают возможность безопасного обслуживания и ремонта стекольных проемов наклонных крыш теплиц. 2 н. и 1 з.п. ф-лы, 3 ил.

Изобретение относится к автоматизированной информационно-справочной системе оценки и управления профессиональными рисками на предприятиях АПК. Технический результат заключается в автоматизации прогнозирования профессиональных рисков на предприятии. Система содержит базу фактических данных работников по состоянию здоровья и профзаболеваниям, базу нормативных данных работников по состоянию здоровья и профзаболеваниям, базу данных по фактическим условиям труда на рабочих местах и базу нормативных данных по фактическим условиям труда на рабочих местах, схемы выборки данных, блоки сравнения, блок накапливающего суммирования аналитических данных, блок вычислителя риска, компаратор, блок выдачи данных, блок управления, устройство хранения коэффициента значимости и оценочных величин риска, блок приема запросов, блок прогнозирования, блок определения вероятности события и тяжести последствий, блок определения категории риска, базу фактических данных по квалификации, стажу и возрасту персонала, базу оптимальных данных по квалификации, стажу и возрасту персонала, базу по фактическим показателям прохождения обучения требованиям охраны труда работниками, базу допустимых данных показателей прохождения обучения требованиям охраны труда работниками, базу фактических данных идентифицированных производственных опасностей. 1 ил.

Изобретение может быть использовано для создания упругих подвесов, торсионов и других элементов (например, балок, мембран, струн) микромеханических устройств, например кремниевых гироскопов и акселерометров. Способ изготовления упругого элемента микромеханического устройства заключается в окислении плоской пластины из монокристаллического кремния с ориентацией поверхности в плоскости (100), трехкратного проведения последовательности операций, состоящей из нанесения фоторезиста, вскрытия в нем окон методом двухсторонней фотолитографии и травления окисла по вскрытым окнам. На первом этапе травление окисла проводится до кремния, на втором на глубину, равную 2/3, а на третьем на глубину, равную 1/3 от его начальной толщины. Далее проводят жидкостное травление кремния на глубину, равную 0,5 H1, и дважды повторяют последовательность операций, состоящую из травления окисла на глубину, равную 1/3 от его начальной толщины, и жидкостного травления кремния. Изобретение обеспечивает улучшение качества и воспроизводимости технологии. 6 з.п. ф-лы, 6 ил.

Изобретение относится к инфракрасной технике и может быть использовано при изготовлении микроболометрических матриц, детектирующих излучение в двух инфракрасных (ИК) диапазонах с длинами волн 3-5 мкм и 8-14 мкм, соответствующих окнам прозрачности атмосферы. Инфракрасный микроболометрический детектор включает в себя единственный микромостиковый слой с множеством пикселей, каждый из которых содержит по меньшей мере один структурный слой из нитрида кремния, детектирующий излучение слой из оксида ванадия и слой, содержащий поглощающий материал. Поглощающим материалом является пленка тантала толщиной от 3 до 20 нм, при этом толщина слоя нитрида кремния не превышает 210 нм, а толщина слоя окиси ванадия - 170 нм. Технический результат заключается в создании микроболометрического детектора, имеющего равные коэффициенты поглощения в двух спектральных диапазонах, и повышении его быстродействия без снижения разрешающей способности. 1 табл., 8 ил.
Изобретение относится к получению светопоглощающего покрытия и может быть использовано при изготовлении элементов оптико-электронных приборов, систем пассивной термической защиты космических аппаратов, шторок телескопов и солнечных коллекторов

Изобретение относится к области технологии изготовления микроэлектронных и микромеханических устройств и может быть использовано при изготовлении сенсоров, функционирующих на основе туннельного эффекта и обеспечивающих преобразование «перемещение - электрический сигнал»

Изобретение относится к области микросистемной техники и может быть использовано при создании сенсоров, функционирующих на основе туннельного эффекта, обеспечивающих преобразование «перемещение-электрический сигнал», в информационных системах мониторинга для прогнозирования, диагностики и контроля воздействий ударных волн и акустических колебаний на различные конструкции, транспортные средства, промышленные здания и сооружения, температуры, для создания сверхчувствительных микрофонов и диагностического медицинского оборудования
Изобретение относится к области технологии изготовления микроэлектронных и микромеханических устройств и может быть использовано при изготовлении газовых сенсоров, материалами чувствительных элементов которых служат композиционные материалы, состоящие из полимерной матрицы, армированной частицами наполнителя

 


Наверх