Патенты автора Орлов Евгений Прохорович (RU)

Изобретение относится к области лазерной техники и касается голографической локационной системы. Система содержит телескоп с блоком наведения, лазерные передатчик, гетеродин, лазерный усилитель с блоками накачки и управления, измеритель частоты лазерного излучения, блоки сканирования лазерного излучения, блоки сдвига частоты лазерного излучения, блок спектральных фильтров, управляемые ослабители, объективы, выносные полупрозрачные зеркала, блоки перемещения выносных полупрозрачных зеркал, полупрозрачные и отражательные зеркала, уголковый отражатель, блок перемещения уголкового отражателя, фотоприемные блоки, блок управления и телевизионную камеру. Технический результат заключается в обеспечении высокой чувствительности локационной системы. 4 з.п. ф-лы, 3 ил.

Изобретение относится к области ядерной энергетики и лазерной измерительной техники и предназначено для использования на атомных электростанциях (далее - АЭС) для мониторинга атмосферы в районе расположения атомной электростанции. Лазерная система содержит лазерные генераторы, фотоприемные блоки, управляемые спектральные фильтры, волоконно-оптические линии, открытый оптический резонатор, матрицы уголковых отражателей, телескоп и беспилотный летательный аппарат с размещенной на его борту матрицей уголковых отражателей. Отличительной особенностью изобретения является использование БПЛА для доставки эффективного отражательного элемента - матрицы уголковых отражателей - в любую точку контролируемого пространства над районом расположения АЭС. Применение лазерной системы позволяет обеспечить непрерывный и оперативный мониторинг состояния атмосферы на больших пространствах в районе расположения АЭС и обнаружение аварийной ситуации на ранних стадиях ее развития. Достигаемый технический результат - повышение чувствительности и точности измерения уровня концентрации молекулярного йода и других продуктов деления урана в атмосфере в районе расположения АЭС. 4 з.п. ф-лы, 1 ил.

Изобретение относится к лазерной системе обнаружения аварийного режима работы ядерного реактора. Мониторинг атмосферы технического помещения 1 осуществляется путем анализа характеристик газового состава в объеме измерительного блока-контейнера 2 посредством просвечивания этого объема лазерным излучением, генерируемым первым лазерным генератором 3. Лазерное излучение взаимодействует с газообразным веществом внутри объема измерительного блока-контейнера 2. Результаты этого взаимодействия регистрируются последующими измерительными блоками лазерной системы, с которыми измерительный блок-контейнер 2 связан посредством первой-третьей 13-15 волоконно-оптических линий. Внутри измерительного блока-контейнера 2 находятся адаптеры 7, 12 и 8, причем первый и второй адаптеры 7, 8 оптического волокна оптически связаны соответственно с первым и вторым зеркалами 5, 6 открытого оптического резонатора, а третий адаптер 12 оптического волокна оптически связан с первой линзой 11. Затем образующееся при взаимодействии лазерного излучения от первого лазерного генератора 3 с внутренней газовой средой в объеме измерительного блока-контейнера 2 вторичное оптическое излучение поступает по трем волоконно-оптическим линиям 13-15 к последующей измерительной аппаратуре лазерной системы. Техническим результатом является повышение чувствительности и точности измерения уровня концентрации молекулярного йода и других продуктов деления урана в атмосфере технических помещений АЭС при повышении достоверности (доверительной вероятности) получаемых результатов измерений. 8 з.п. ф-лы, 3 ил.

Лазерная измерительная система может быть использована для абсорбционного спектрального анализа веществ в технических средах ядерных энергетических установок (ЯЭУ). Система содержит измерительную кювету 1, две эталонных кюветы 3 и 5, лазерный генератор 19, три фотоприемных блока 13-15, два измерителя 20 и 34 лазерного излучения, три управляемых спектральных фильтра 16-18, выдвижное отражательное зеркало 35 с блоком 36 перемещения, блок 48 обработки и управления, шесть уголковых отражателей 7-12, два отражательных зеркала 37 и 47, девять полупрозрачных зеркал 38-46, семь управляемых оптических ослабителей 28-33, шесть оптических переключателей 21-26. Управляющий вход лазерного генератора, выходы всех фотоприемных блоков и обоих измерителей лазерного излучения, а также управляющие входы всех управляемых спектральных фильтров, управляемых оптических ослабителей, оптических переключателей и блока перемещения подключены к блоку управления и обработки. Технический результат - повышение чувствительности при определении урана в технических средах ЯЭУ. 4 з.п. ф-лы, 4 ил.

Изобретение относится к области лазерной измерительной техники и касается лазерного измерительного устройства. Устройство содержит лазерный генератор, измеритель лазерного излучения, измерительную кювету с первым блоком перемещения, эталонную кювету со вторым блоком перемещения, первый и второй фотоприемные блоки, первый и второй управляемые спектральные фильтры, управляемый оптический ослабитель, лазерный усилитель с блоком накачки, выдвижное полупрозрачное зеркало с третьим блоком перемещения, отражательное зеркало, три полупрозрачных зеркала и первый и второй уголковые отражатели. Технический результат заключается в повышении чувствительности устройства. 5 з.п. ф-лы, 3 ил.

Изобретение относится к области ядерной энергетики и измерительной техники. Лазерная система для мониторинга атмосферы в технических помещениях атомных электростанций содержит первый и второй лазерные генераторы, измеритель лазерного излучения, эталонную кювету с блоком наполнения эталонной газовой смесью, первый и второй фотоприемные блоки, первый и второй управляемые спектральные фильтры, первую и вторую волоконно-оптические линии с входными и выходными адаптерами волокна, выносное зеркало с блоком управления, оптическую линию задержки, блок обработки и управления, первый и второй уголковые отражатели, первое-четвертое отражательные зеркала и первое-седьмое полупрозрачные зеркала. Введены оптический коммутатор, первый и второй открытые оптические резонаторы, размещенные каждый в отдельном контролируемом техническом помещении атомной электростанции. При этом открытые оптические резонаторы снабжены выдвижными уголковыми отражателями. Изобретение обеспечивает повышение чувствительности и точности измерения уровня концентрации молекулярного йода и других продуктов деления урана в атмосфере технических помещений АЭС. 5 з.п. ф-лы, 6 ил.

Изобретение относится к области ядерной энергетики. Заявленная лазерная система измерения параметров теплоносителя в энергетическом ядерном реакторе содержит лазерный генератор 1, блок 2 измерения лазерного излучения, входной и выходной иллюминаторы 11, 12 трубопровода 10 теплоносителя, расширитель 3 пучка, первый и второй фотоприемные блоки 4, 5, третий фотоприемный блок 6 на основе передающей телевизионной камеры, оптический затвор 7, блок 8 управления и блок 9 обработки информации, линзы 13, 14, 17, 26, 28-35, отражательные зеркала 36-40 и 53, полупрозрачные зеркала 41-52 и 54, три управляемых пространственных фильтра 16, 25, 27 с блоками 55-57 управления, три фотоприемных гетеродинных блока 21-23, четвертый фотоприемный блок 18, два блока 19, 20 сдвига частоты лазерного излучения и две фурье-линзы 15, 24. Технический результат заключается в увеличении точности измерения параметров паросодержания, в том числе при малых уровнях влажности пара, в повышении точности измерения скорости течения теплоносителя по трубопроводу ядерного реактора, в увеличении надежности и достоверности получаемых результатов измерения параметров теплоносителя. 7 з.п. ф-лы, 5 ил.

Изобретение относится к области ядерной энергетики. Лазерная система для обнаружения протечки в контуре теплоносителя ядерного энергетического реактора содержит первый и второй лазерные генераторы, измеритель лазерного излучения, первую измерительную кювету, подсоединенную к первому контуру теплоносителя, два фотоприемных блока, первый управляемый спектральный фильтр, первую волоконно-оптическую линию с адаптерами волокна, два выносных зеркала с блоками управления, блок обработки и управления, также четыре уголковых отражателя, четыре отражательных зеркала и шесть полупрозрачных зеркал, введены вторая измерительная кювета, подключенная ко второму контуру теплоносителя ядерного энергетического реактора, вторая волоконно-оптическая линия, снабженная адаптерами волокна, три оптических линии задержки, третий фотоприемный блок, второй и третий управляемые спектральные фильтры, блок сменных фильтров, два уголковых отражателя и пять полупрозрачных зеркал. Изобретение позволяет оперативно обнаружить протечку теплоносителя из первого контура теплоносителя во второй контур теплоносителя. 5 з.п. ф-лы, 7 ил.

Изобретение относится к ядерной энергетике и предназначено для оперативного измерения параметров теплоносителя водоводяного энергетического ядерного реактора. Лазерная система измерения параметров теплоносителя ядерного энергетического реактора. Установка содержит первый и второй лазерные генераторы, измерительную кювету, подсоединенную к контуру теплоносителя, первую эталонную кювету, три фотоприемных блока, управляемый спектральный фильтр, два оптических переключателя, блок обработки информации и управления, а также четыре отражательных зеркала и шесть полупрозрачных зеркал. Установка позволяет произвести высокоточное определение параметров теплоносителя в первом или отдельно во втором контурах ядерного реактора на основе просвечивания теплоносителя лазерным зондирующим излучением и измерения параметров комбинационного рассеяния лазерного излучения, обусловленного молекулами борной кислоты и молекулами веществ примесей. Изобретение позволяет повысить чувствительность лазерной измерительной системы и увеличить точность определения концентрации борной кислоты и примесей, образующихся при работе ядерного реактора. 5 з.п. ф-лы, 8 ил.

Изобретение относится к ядерной энергетике и лазерной измерительной технике и предназначено для использования в ядерных энергетических реакторах типа РБМК и ВВЭР для оперативного измерения физических характеристик теплоносителя, в частности измерения паросодержания в теплоносителе в активной зоне ядерных реакторов с водным теплоносителем. Лазерная измерительная система содержит оптические датчики, размещенные в трубопроводе теплоносителя и в активной зоне ядерного реактора, соединенные волоконно-оптическими линиями с измерительной аппаратурой, вынесенной в безопасную зону на расстояние 1000 метров от ядерного реактора. Оптическая аппаратура лазерной измерительной системы содержит лазерные генераторы, фотоприемные блоки, волоконно-оптические линии, управляемые оптические фильтры и модель-аналог ядерного реактора, которая обеспечивает непрерывное натурное моделирование оптических характеристик теплоносителя контролируемого ядерного реактора. Технический результат - увеличение точности измерения паросодержания в теплоносителе ядерного энергетического реактора в различных точках контура теплоносителя и в активной зоне ядерного реактора, увеличение надежности и достоверности получаемых результатов измерения параметров теплоносителя. 6 з.п. ф-лы, 21 ил.

Изобретение относится к измерительной технике, в частности к системам для непрерывного и оперативного измерения концентрации борной кислоты в первом контуре теплоносителя ядерного реактора. Система измерения концентрации борной кислоты в контуре теплоносителя энергетического ядерного реактора включает первый и второй лазерные генераторы, измерительную и эталонную кюветы, первый и второй фотоприемные блоки, электрически связанные с блоком обработки и управления, а также оптические элементы, обеспечивающие оптическую связь между лазерными генераторами, кюветами и фотоприемными блоками. Измерение осуществляется абсорбционным спектральным методом путем просвечивания зондирующим лазерным излучением измерительной кюветы, подключенной к первому контуру теплоносителя ядерного ВВЭР реактора. Техническим результатом изобретения является повышение точности измерений, а также возможность измерения малых концентраций борной кислоты в составе теплоносителя и обеспечение высокой оперативности проведения дистанционных измерений. 6 з.п. ф-лы, 9 ил., 2 табл.

Изобретение относится к области ядерной энергетики и касается системы измерения концентрации борной кислоты в первом контуре теплоносителя ядерного реактора. Система включает в себя два источника лазерного излучения, измерительную и эталонную кювету, фотоприемный блок, блок обработки сигналов, блок управления, блок измерения параметров лазерного излучения, два модулятора лазерного излучения, три оптических переключателя, три управляемых оптических ослабителя, управляемый спектральный фильтр, четыре волоконно-оптические линии, пять отражательных и пять полупрозрачных зеркал. Технический результат заключается в повышении оперативности, безопасности и точности измерений. 2 н. и 15 з.п. ф-лы, 11 ил., 1 табл.

Изобретение относится к области космической лазерной связи и лазерной техники и предназначено для создания комплексов стационарной лазерной космической связи в ближнем космосе - до орбиты Луны, а также в дальнем космосе - на трассе Земля - Марс, и в пределах всей солнечной системы

Изобретение относится к космической лазерной связи и лазерной технике

 


Наверх