Патенты автора Матвеев Виктор Алексеевич (RU)

Изобретение относится к химической технологии и может быть использовано при изготовлении оптической, люминесцентной и лазерной керамики. Гидратированный оксид иттрия Y2O3⋅nH2O, где n>3, обрабатывают раствором карбоната аммония, содержащим 150-200 г/л (NH4)2CO3, при Ж:Т=10-15 и температуре 70-120 °С в течение 4-8 ч. Образовавшийся осадок двойного карбоната иттрия и аммония NH4Y(СО3)2⋅⋅H2O отделяют от реакционного раствора, промывают водой порционно в режиме противотока, сушат при 100-120 °С до постоянной массы и прокаливают при 700-800 °С в течение 1-2 ч с получением мелкодисперсного порошка оксида иттрия. Реакционный раствор после отделения осадка двойного карбоната иттрия и аммония разбавляют первой порцией промывной воды, доукрепляют карбонатом аммония, взятым в количестве, обеспечивающем его содержание 150-200 г/л, и используют для обработки гидратированного оксида иттрия. Изобретение позволяет получить мелкодисперсный порошок оксида иттрия в узком диапазоне крупности 15-20 нм, повысить экологичность способа за счёт уменьшения количества жидких отходов, а также его технологичность за счёт уменьшения числа и расхода реагентов и объёма материальных потоков. 3 пр.

Изобретение относится к области химической технологии, в частности к способам получения корундовой керамики, и может быть использовано в радиоэлектронной и электровакуумной технике, а также в медицине для изготовления протезов и имплантатов. Осуществляют приготовление водной суспензии из слоистого двойного гидроксида магния и алюминия Mg4Al2(OH)12CO3⋅3H2O и гидратированного оксида алюминия Al2O3⋅nH2O, где n>3, с дополнительным введением в нее карбоната аммония в количестве 3-8 моль на 1 моль Al2O3. Слоистый двойной гидроксид магния и алюминия Mg4Al2(OH)12CO3⋅3H2O получают смешением кристаллогидратов хлорида или нитрата магния и алюминия с карбонатом аммония. Суспензию перемешивают при температуре 70-120°С и Ж:Т=10-18 в течение 2-6 часов с образованием осадка гидроксокарбоната алюминия и аммония, который содержит тонкодисперсный порошок слоистого двойного гидроксида магния и алюминия. Осадок отделяют и сушат при 100-120°С до обеспечения постоянной массы, после чего нагревают до температуры 1100-1200°С и выдерживают в течение 1,0-1,5 часов с получением керамообразующей смеси, которую подвергают формовке и обжигу. Заявляемый способ позволяет снизить энергоемкость и число операций и получить корундовую керамику плотностью 3,95-3,98 г/см3 при использовании широкодоступных исходных компонентов. 2 з.п. ф-лы, 4 пр.

Изобретение может быть использовано при получении алюминиевого коагулянта, применяемого в области водоподготовки. Для получения гидроксохлорсульфата алюминия сернокислую соль алюминия в виде кристаллогидрата - сульфата алюминия Al2(SO4)3⋅18H2O или алюминиевых квасцов R2SO4⋅Al2(SO4)3⋅24H2O, где R - К или NH4+, обрабатывают газообразным аммиаком. Полученную реакционную массу подвергают водной обработке с образованием суспензии. Из суспензии выделяют осадок гидроксосульфата алюминия, который растворяют в 25-37% соляной кислоте при температуре 70-110°С в течение 0,5-2 ч с получением раствора гидроксохлорсульфата алюминия. Изобретение позволяет уменьшить число операций, снизить энергоемкость и объем материальных потоков, повысить извлечение алюминия в целевой продукт. 2 з.п. ф-лы, 4 пр.

Изобретение относится к получению гидроталькитоподобных соединений и может быть использовано в производстве сорбентов и катализаторов. Способ получения слоистого гидроксида магния и алюминия включает смешение хлорида или нитрата магния или алюминия с карбонатным реагентом, выделение гидратного осадка магния и алюминия, его промывку водой и сушку. Хлорид или нитрат магния или алюминия берут в виде кристаллогидратов MgCl2⋅6H2O, АlСl3⋅6Н2O, Mg(NO3)2⋅6H2O, Аl(NO3)3⋅9Н2O. Их смешение с карбонатным реагентом проводят в твердом виде при молярном соотношении Al3+:Mg2+:CO32-, равном 1:(2-3):(3,5-4,5). Полученную реакционную массу выщелачивают водой при температуре 70-95°С в течение 0,5-2 часов с образованием суспензии. Из полученной суспензии выделяют гидратный осадок магния и алюминия. Промывку осадка водой ведут до значения рН промывной воды не более 7,5. В качестве карбонатного реагента используют карбонат натрия или карбонат аммония. Изобретение позволяет получить слоистый гидроксид магния и алюминия состава Mg4Al2(OH)12⋅CO3⋅3H2O, снизить энергоемкость и длительность процесса его получения, уменьшить объем материальных потоков, в том числе сточных вод. 1 з.п. ф-лы, 4 пр.
Изобретение относится к области химической технологии и может быть использовано для получения γ-оксида алюминия, применяемого в производстве катализаторов, сорбентов, осушителей и т.п. Алюмокалиевые или алюмоаммониевые квасцы обрабатывают газообразным аммиаком, продукт аммонизации выщелачивают водой, из образовавшейся суспензии выделяют гидратный осадок, который обрабатывают раствором карбоната или гидрокарбоната аммония, содержащим 2-4 моль/л [NH4]+. Обработку гидратного осадка ведут при Ж:Т=10-20:1 и температуре 105-125°C в течение 6-30 ч. Полученный алюмосодержащий осадок отделяют, промывают водой и сушат. После сушки алюмосодержащий осадок прокаливают при температуре 500-600°C в течение 1-4 ч с получением γ-оксида алюминия. Способ позволяет получить γ-оксид алюминия с пониженным до 0,004% содержанием примесных щелочных элементов и до 0,003% примеси триоксида серы, а также увеличенной удельной поверхностью до 430 м2/г и повышенной до 0,81 см3/г пористостью частиц. 4 з.п. ф-лы, 5 пр.
Изобретение относится к способам переработки эвдиалитового концентрата и может быть использовано для получения соединений циркония, редкоземельных элементов (РЗЭ) и диоксида кремния. Способ включает разложение концентрата серной кислотой, отделение остатка от цирконийсодержащего раствора, его водную промывку, выделение циркония из раствора и извлечение РЗЭ из кремнеземсодержащего остатка. Разложение концентрата ведут 30-40% серной кислотой при температуре 80-120°С и расходе кислоты 125-200% по отношению к стехиометрии. Извлечение РЗЭ осуществляют промывкой остатка в две стадии. На первой стадии расход воды составляет 2,5-3,5 л на 1 кг концентрата с отмывкой остатка от цирконийсодержащего раствора. Полученную промывную воду смешивают с цирконийсодержащим раствором. На второй стадии расход воды составляет 10-20 л на 1 кг концентрата с переводом в промывной раствор сульфатов РЗЭ, после чего из кремнеземсодержащего остатка извлекают диоксид кремния. Техническим результатом является обеспечение высокой скорости фильтрации пульпы при сокращении числа реагентов и снижении количества твердых отходов. 6 з.п. ф-лы, 7 пр.

Изобретение может быть использовано при получении оксида алюминия с низким содержанием примесей, используемого для выращивания кристаллов, производства керамики и огнеупоров. Нитрат алюминия Al(NO3)3⋅9H2O или хлорид алюминия AlCl3⋅6H2O смешивают с карбонатом аммония или со смесью карбоната аммония и гидрокарбоната аммония. Количество гидрокарбоната аммония в смеси не превышает 50 мол.%. Смешивание проводят в течение 10-30 минут с образованием реакционной массы, содержащей гидроалюмокарбонат аммония. Карбонат аммония или его смесь с гидрокарбонатом аммония берут в количестве 100-130% от стехиометрии на образование гидроалюмокарбоната аммония. Полученную реакционную массу подвергают термической обработке при температуре 300-600°С с получением оксида алюминия. Изобретение позволяет получить в условиях твердофазного процесса мелкодисперсный оксид алюминия с удельной поверхностью 234-598 м2/г, уменьшить длительность и энергоемкость процесса, исключить образование кислых сточных вод, что повышает экологичность. 1 з.п. ф-лы, 6 пр.

Изобретение относится к способам получения активного гидроксида алюминия, пригодного для получения эффективного коагулянта - гидроксохлорида алюминия, а также катализаторов, осушителей и сорбентов. Способ включает смешение кристаллических солей алюминия и карбоната натрия в твердом виде при расходе карбоната натрия 4-6 моль на 1 моль Al2O3. В качестве соли алюминия берут его нитрат Al(NO3)3·9H2O или хлорид AlCl3·6H2O. Полученную реакционную массу выщелачивают водой при температуре не выше 50°C с образованием суспензии, из которой выделяют алюминийсодержащий осадок. Осадок промывают водой при температуре 60-80°C до величины pH промывной воды не более 7,5 и сушат. Технический результат - получение химически активного по отношению к соляной кислоте гидроксида алюминия, снижение количества жидких отходов, повышение экологичности способа. 3 з.п. ф-лы, 3 пр.
Изобретение относится к способу переработки эвдиалитового концентрата. Способ включает разложение концентрата минеральной кислотой с получением геля, термическую обработку геля, регенерацию кислоты, водное выщелачивание геля с переводом в раствор редкоземельных элементов (РЗЭ), а в нерастворимый остаток - соединения циркония. Затем ведут отделение раствора от остатка и выделение из остатка соединения циркония. При этом разложение концентрата ведут при расходе кислоты 90-110% от стехиометрического количества, а термическую обработку геля, водное выщелачивание геля и регенерацию кислоты производят одновременно в автоклавных условиях при температуре 175-250°C в течение 1-4 часов с получением раствора РЗЭ, содержащего свободную кислоту. Соединение циркония выделяют из нерастворимого остатка путем мокрого гравитационного сепарирования. В качестве минеральной кислоты используют соляную или азотную кислоты. Техническим результатом является упрощение аппаратурного оформления и улучшение условий труда. 2 з.п.ф-лы, 6 пр.
Изобретение относится к области химии
Изобретение относится к области химии и металлургии и может быть использовано при переработке нефелина азотнокислотным способом
Изобретение относится к технологии неорганических веществ и может быть использовано при получении кремнеземсодержащих растворов солей алюминия, применяемых в качестве коагулянтов-флокулянтов для очистки сточных и питьевых вод, а также осаждения твердых взвесей из минеральных суспензий при очистке больших объемов высокомутной воды
Изобретение относится к области химической технологии и может быть использовано в производстве катализаторов, сорбентов, осушителей

Изобретение относится к области химии и может быть использовано при переработке высококалиевого нефелин-полевошпатового сырья, в качестве которого используют сыннырит или рисчоррит
Изобретение относится к технологии неорганических веществ, в частности к получению алюмокалиевых квасцов, используемых в химической, бумажной, кожевенной, текстильной, пищевой и фармацевтической промышленности
Изобретение относится к цветной металлургии и может быть использовано в производстве глинозема при сернокислотной переработке глиноземсодержащего сырья

 


Наверх