Патенты автора Тареева Ольга Альбертовна (RU)

Изобретение относится к технологии извлечения редкоземельных элементов (РЗЭ) из монацитового концентрата и может быть использовано в химической и металлургической промышленности. Осуществляют обработку монацитового концентрата фосфорной кислотой концентрацией 35-45 мас. % при температуре 60-80°C с переводом редкоземельных элементов и тория в сульфокатионит. После этого производят отделение сульфокатионита от фосфорнокислого раствора и неразложившегося остатка и десорбцию РЗЭ. Из сульфокатионита РЗЭ и торий десорбируют совместно при температуре 70-90°С раствором нитрата или хлорида натрия концентрацией 5,0-5,3 моль/л с получением элюата. Элюат нейтрализуют гидроксидом или карбонатом натрия сначала до рН 4,0-4,4 с осаждением и отделением ториевого концентрата, а затем до рН 7,35-7,5 с осаждением и отделением концентрата РЗЭ. Обеспечивается извлечение до 89,8% РЗЭ в нерадиоактивный концентрат и получение богатых торием кеков, снижение температуры фосфорнокислотного разложения, решение задачи десорбции радионуклидов из сульфокатионита и исключение использования соляной кислоты для десорбции РЗЭ. 1 з.п. ф-лы, 3 табл., 3 пр.

Изобретение относится к способу извлечения редкоземельного концентрата из раствора, полученного при переработке редкоземельного сырья, и может быть использовано в химической и металлургической промышленности. Осуществляют ступенчатую нейтрализацию раствора, содержащего нитрат или хлорид натрия, редкоземельные элементы и примесные компоненты кальция, алюминия, железа, титана и тория. На первой ступени нейтрализацию раствора ведут сплавом на основе нитрата или хлорида натрия, содержащим 2,5-3,0 мас. % карбоната или гидроксида натрия, до обеспечения рН 4,40-4,45 с осаждением и отделением торийсодержащего концентрата, а на второй ступени - указанным сплавом, содержащим 15-30 мас. % карбоната или гидроксида натрия, до обеспечения рН 7,35-7,50 с осаждением и отделением редкоземельного концентрата. Способ позволяет эффективно извлекать редкоземельный концентрат из раствора, полученного при переработке редкоземельного сырья, с обеспечением высокого до 98,64% извлечения РЗЭ в нерадиоактивный концентрат. 2 з.п. ф-лы, 6 табл., 6 пр.
Изобретение относится к переработке фторсодержащих концентратов редкоземельных элементов (РЗЭ). Бастнезитовый концентрат обрабатывают низкоконцентрированной минеральной кислотой при повышенной температуре в присутствии сульфоксидного катионита с переводом редкоземельных элементов, кальция и тория в сульфоксидный катионит, а фтора в кислый раствор. Обработку концентрата ведут до достижения концентрации оксидов РЗЭ в катионите не менее 40 г/л. Затем катионит отделяют от кислого раствора, который используют в обороте для кислотной обработки концентрата до достижения в нем концентрации фтора 10-15 г/л. Катионит регенерируют с получением десорбата, который подвергают ступенчатой нейтрализации щелочным соединением с последовательным осаждением и отделением тория, редкоземельного концентрата и кальцийсодержащего осадка. Заявляемый способ позволяет эффективно перерабатывать бастнезитовый концентрат с обеспечением высокой (до 96,7%) степени извлечения РЗЭ в нерадиоактивный концентрат и применением более доступных и дешевых минеральных кислот, использование которых в обороте уменьшает количество образующихся отходов. 1 з.п. ф-лы, 9 пр.

Изобретение относится к обработке фосфатного концентрата редкоземельных элементов (РЗЭ), получаемого при комплексной переработке апатита, и может быть использовано в химической промышленности для получения нерадиоактивных карбонатного или гидроксидного концентратов РЗЭ. Осуществляют обработку фосфатного концентрата РЗЭ, содержащего примеси кальция, тория, алюминия и железа, фосфорной кислотой концентрацией 20-38 мас. % при комнатной температуре в присутствии сульфоксидного катионита. Массовое соотношение концентрата, кислоты и сульфоксидного катионита равно 1:(10-15):(4-6). При необходимости обработку фосфатного концентрата фосфорной кислотой ведут в присутствии пероксида водорода, расход которого составляет 0,25-0,5 г на 1 г церия в фосфатном концентрате. В процессе растворения концентрата сульфоксидный катионит сорбирует РЗЭ и кальций, а фосфор и торий переходят в образовавшуюся пульпу. Пульпу отделяют от катионита и осуществляют десорбцию РЗЭ и кальция из катионита раствором нитрата аммония с получением десорбата. Затем проводят нейтрализацию десорбата аммонийным соединением с получением концентрата РЗЭ. Способ обеспечивает извлечение в нерадиоактивный концентрат 93,7-98,6% РЗЭ при пониженной энергоемкости обработки фосфатного концентрата и может быть реализован при меньшем числе реагентов. 1 з.п. ф-лы, 5 пр.
Изобретение может быть использовано в химической промышленности для получения фосфорной кислоты, концентрата редкоземельных элементов (РЗЭ), карбонатов щелочноземельных металлов и соединений фтора. Фторсодержащий апатитовый концентрат обрабатывают фосфорнокислым раствором в присутствии сульфоксидного катионита с переводом фтора в раствор. Катионит используют в натриевой или калиевой форме при расходе 115-120% от стехиометрически необходимого для сорбции катионов металлов. Затем отделяют фосфорную кислоту от катионита, содержащего кальций, стронций и РЗЭ. После отделения фосфорной кислоты из нее выделяют фильтрацией или центрифугированием осадок фторсиликата натрия или калия. Далее из фосфорной кислоты электродиализом извлекают остаточное количество натрия или калия в виде раствора гидроксида. Осуществляют десорбцию кальция, стронция и РЗЭ из катионита раствором хлорида или нитрата натрия или калия и ступенчатую нейтрализацию десорбата раствором карбоната натрия или калия. Нейтрализацию десорбата проводят с осаждением концентрата карбонатов РЗЭ, затем карбоната кальция и концентрата карбоната стронция. Изобретение позволяет повысить чистоту фосфорной кислоты за счет снижения содержания в ней примеси фтора при обеспечении высокой степени извлечения фосфора в фосфорную кислоту, а также получить товарные продукты в виде концентрата карбоната стронция и фторсиликата натрия или калия. 5 з.п. ф-лы, 4 пр.
Изобретение относится к способу переработки фторсодержащих концентратов редкоземельных элементов (РЗЭ) и может быть использовано в гидрометаллургии. Иттрофлюоритовый концентрат, содержащий в мас. %: 40 F, 13,15 ΣТr2О3, 0,16 ТhO2, 66,4 СаО, обрабатывают фтористоводородной кислотой концентрацией 5-10 г/л при температуре 60-80°С в течение 4-8 часов в присутствии сульфоксидного катионита с переводом редкоземельных элементов, кальция и тория в сульфоксидный катионит, а фтора - в кислый раствор. Сульфокатионит берут в количестве 265-300% от стехиометрически необходимого для сорбции содержащихся в концентрате катионов металлов. Затем сульфокатионит отделяют от кислого раствора и регенерируют раствором нитрата аммония с получением десорбата. Последний подвергают ступенчатой нейтрализации аммонийным соединением с последовательным осаждением и отделением тория, редкоземельного концентрата и кальцийсодержащего осадка. Способ обеспечивает расширение сырьевой базы для производства редкоземельных элементов при высокой (до 90,4%) степени извлечения РЗЭ в концентрат, высокой степени очистки от фтора и тория и уменьшении количества образующихся отходов. 1 з.п. ф-лы, 4 пр.

Изобретение относится к способу переработки апатитового концентрата. Способ включает обработку концентрата кислым раствором в присутствии катионита с последующим отделением продукционной фосфорной кислоты от катионита, содержащего кальций и примесные металлы. Далее проводят регенерацию катионита с переводом кальция и примесных металлов в десорбат. При этом в качестве кислого раствора используют раствор фосфорной кислоты концентрацией 5-38 мас.%, а в качестве катионита - сульфоксидный катионит в количестве 100-125% от стехиометрически необходимого для сорбции содержащихся в апатитовом концентрате катионов металлов. Способ позволяет получать за единичный цикл обработки продукционную фосфорную кислоту концентрацией 41,05 мас.% с низким содержанием катионных примесей. Извлечение фосфора из апатитового концентрата в раствор фосфорной кислоты составляет 99,1-99,8%. Извлечение РЗЭ в карбонатный концентрат составляет 82,5-98,1%, а кальция и стронция в сумму их карбонатов 84,4-96,0%. 2 з.п. ф-лы, 4 табл., 4 пр.

Изобретение относится к обработке фосфатного концентрата редкоземельных элементов (РЗЭ), получаемого при комплексной переработке апатита, и может быть использовано в промышленности для получения нерадиоактивного карбонатного или гидроксидного концентрата РЗЭ. Осуществляют обработку фосфатного концентрата РЗЭ, содержащего примеси кальция, тория, алюминия и железа, при нагревании в присутствии сульфоксидного катионита 1-2 мас.% азотной кислотой, в которую вводят фтор-ион в количестве, определяемом согласно зависимости. В процессе обработки концентрата сульфоксидный катионит сорбирует РЗЭ и кальций, а фосфор, фтор и торий переходят в образовавшуюся пульпу. Далее осуществляют десорбцию РЗЭ и кальция из катионита раствором нитрата аммония с получением десорбата. Затем проводят нейтрализацию десорбата аммонийным соединением до рН 7,35-7,5 с получением очищенного концентрата РЗЭ. Техническим результатом является исключение образования радиоактивного сульфоксидного катионита при его многократном использовании и снижение расхода кислотного реагента и катионита. 4 з.п. ф-лы, 5 пр.

Изобретение относится к переработке фосфогипса. После водной обработки фосфогипс выщелачивают серной кислотой с переводом концентрата редкоземельных элементов (РЗЭ) и примесных компонентов в раствор. Промытый фосфогипс нейтрализуют с получением гипсового продукта. Сорбцию РЗЭ осуществляют в две стадии. На первой стадии сорбции часть раствора выщелачивания пропускают через сульфоксидный катионит. После чего проводят десорбцию с получением первичного кальций-торийсодержащего десорбата. На второй стадии сорбции через катионит пропускают другую часть раствора выщелачивания. Полученный вторичный обедненный сернокислый раствор используют для десорбции с получением вторичного кальций- торийсодержащего десорбата. Затем осуществляют десорбцию и осаждение РЗЭ с отделением полученного осадка. Полученные первичный и вторичный десорбаты объединяют, доукрепляют серной кислотой до концентрации исходного сернокислого раствора, вводят фторсодержащее соединение в количестве, обеспечивающем концентрацию фтор-иона 20-50 мг/л, и направляют в оборот на выщелачивание нового слоя фосфогипса. Способ позволяет многократно использовать при выщелачивании образующиеся десорбаты, с получением нерадиоактивного редкоземельного концентрата и качественного гипсового продукта. 1 з.п. ф-лы, 4 пр.
Изобретение относится к способу переработки фосфогипса. Способ включает водную обработку, выщелачивание фосфогипса раствором серной кислоты с концентрацией 3-6 мас.% с переводом РЗЭ, кальция и тория в раствор выщелачивания и с получением гипсового продукта, извлечение РЗЭ, кальция и тория из раствора выщелачивания сорбцией сульфоксидным катионитом. При этом выщелачивание ведут раствором серной кислоты при Ж:Т не менее 1,4:1. Сорбцию РЗЭ, кальция и тория осуществляют стадийно. На первой стадии раствор выщелачивания пропускают через катионит до начала проскока РЗЭ в образующийся первичный обедненный сернокислый раствор. Затем проводят десорбцию кальция и тория из насыщенного катионита первичным обедненным сернокислым раствором с получением первичного кальций-торийсодержащего десорбата. На второй стадии через катионит пропускают оставшийся раствор выщелачивания до начала проскока РЗЭ во вторичный обедненный сернокислый раствор, который используют для десорбции кальция и тория с получением вторичного кальций-торийсодержащего десорбата. Затем проводят десорбцию РЗЭ раствором нитрата аммония и осаждение из десорбата РЗЭ при pH 7,35-7,5. Техническим результатом является получение нерадиоактивного редкоземельного концентрата с извлечением РЗЭ из фосфогипса в нерадиоактивный концентрат 77,88% и со снижением расхода используемого сорбента в среднем в 1,6 раза. 5 з.п ф-лы, 5 пр.
Изобретение может быть использовано в химической промышленности для комплексной переработки фосфогипса - фосфополугидрата или фосфодигидрата. Способ переработки фосфогипса включает его предварительную водную обработку. Затем фосфогипс выщелачивают путем пропускания раствора серной кислоты с концентрацией 3-6 мас.% через его слой с вытеснением и отделением водного раствора и переводом РЗЭ и примесных компонентов, в том числе тория, в раствор выщелачивания. Далее проводят нейтрализацию промытого фосфогипса с получением гипсового продукта. РЗЭ и торий извлекают из раствора выщелачивания сорбцией с использованием сульфоксидного катионита и образованием обедненного по РЗЭ и торию сернокислого раствора, который используют в обороте. После этого проводят десорбцию РЗЭ и тория из насыщенного катионита с получением десорбата. При этом десорбцию РЗЭ ведут путем обработки катионита раствором соли аммония с последующим осаждением РЗЭ из десорбата аммонийсодержащим осадителем и отделением осадка РЗЭ. Выщелачивание фосфогипса раствором серной кислоты ведут при Ж:Т не менее 1,4:1. Десорбцию РЗЭ и тория из насыщенного катионита осуществляют последовательно: вначале тория путем обработки катионита сернокислым раствором с концентрацией 3-6 мас.% с получением торийсодержащего десорбата, а затем РЗЭ с получением десорбата, содержащего РЗЭ. Изобретение позволяет исключить образование радиоактивного ториевого осадка при обеспечении высокого качества гипсового продукта, повысить степень извлечения РЗЭ в нерадиоактивный редкоземельный концентрат. 4 з.п. ф-лы, 3 пр.

Изобретение относится к способу извлечения концентрата редкоземельных элементов (РЗЭ) из экстракционной фосфорной кислоты. Экстракционную фосфорную кислоту с концентрацией 27-45 мас.%, содержащую РЗЭ и торий, пропускают через сульфоксидный катионит с образованием обедненного по РЗЭ торийсодержащего фосфорнокислого раствора и катионита, насыщенного РЗЭ. При пропускании фосфорной кислоты через сульфоксидный катионит фиксируют концентрацию тория в обедненном по РЗЭ фосфорнокислом растворе, которая дважды становится равной его концентрации в исходной фосфорной кислоте. Когда концентрация тория в обедненном по РЗЭ растворе второй раз становится равной его концентрации в исходной фосфорной кислоте, катионит считают насыщенным РЗЭ и пропускание через него фосфорной кислоты прекращают. Насыщенный катионит промывают водой. Затем проводят десорбцию РЗЭ раствором сульфата или нитрата аммония с концентрацией 275-300 г/л и из полученного десорбата выделяют нерадиоактивный концентрат РЗЭ. Техническим результатом является извлечение РЗЭ в концентрат 96,7-97,4%. 2 з.п. ф-лы, 1 ил., 2 пр.
Изобретение относится к очистке фосфатно-фторидного концентрата редкоземельных элементов (РЗЭ), получаемого при комплексной переработке апатита. Способ очистки фосфатно-фторидного концентрата РЗЭ, содержащего примеси кальция и тория, включает обработку концентрата раствором серной кислоты концентрацией 4-6 мас.% в присутствии сульфоксидного катионита, при этом РЗЭ, примеси тория и кальция сорбируются сульфоксидным катионитом, перевод фтора наряду с фосфором в сернокислый раствор, отделение сернокислотного раствора от сульфоксидного катионита, десорбцию из катионита РЗЭ и примеси тория и кальция раствором соли аммония с получением десорбата и его нейтрализацию аммонийным соединением в три стадии, при этом на первой стадии нейтрализацию ведут до обеспечения pH 4,2-5,0 с образованием и отделением торийсодержащего осадка, на второй стадии - до обеспечения pH 7,0-7,5 с образованием и отделением концентрата РЗЭ, а на третьей стадии - до рН не менее 8,5 с образованием и отделением кальцийсодержащего осадка. Изобретение обеспечивает высокую степень очистки концентрата РЗЭ от фосфора, тория и фтора и увеличение содержания РЗЭ в очищенном концентрате, а также снижение энергоемкости. 6 з.п. ф-лы, 4 пр.
Изобретение относится к способам выделения концентрата редкоземельных элементов (PЗЭ) из экстракционной фосфорной кислоты, получаемой в дигидратном процессе переработки апатитового концентрата, и может быть использовано в химической промышленности. В нагретую до 65-80°C экстракционную фосфорную кислоту, содержащую РЗЭ и примеси фтора, алюминия, титана и железа, вводят аммиак в количестве, обеспечивающем мольное отношение NH3:P2O5=(0,2-1,0):1. После этого в кислоту вводят фторид аммония в количестве 20-30 г/л с образованием суспензии и переводом основной части РЗЭ и части примесных компонентов в осадок. Осадок концентрата РЗЭ отделяют от фосфорнокислого раствора. Техническим результатом является извлечение РЗЭ в концентрат 96,8-99,8% при пониженном расходе фторсодержащего реагента-осадителя до 10,3-15,4 г/л в пересчете на фторид-ион, что упрощает дальнейшую переработку фосфорнокислого раствора на минеральные удобрения. 2 з.п. ф-лы, 9 табл., 4 пр.

Изобретение относится к переработке свежеполученного фосфополугидрата и может быть использовано для получения концентрата редкоземельных элементов (РЗЭ) и гипсового продукта для строительных материалов. Фосфополугидрат обрабатывают водным раствором, содержащим фтор-ион. Проводят выщелачивание серной кислотой с вытеснением и отделением содержащего фтор-ион водного раствора, а также с переводом РЗЭ и примесных компонентов в раствор выщелачивания и получением слоя фосфополугидрата, насыщенного сернокислым раствором. Затем проводят вытеснение водой остаточного количества раствора серной кислоты с получением отмытого фосфополугидрата и раствора выщелачивания. Нейтрализуют фосфополугидрат кальцийсодержащим реагентом с получением гипсового продукта. Извлекают РЗЭ и примесные компоненты из раствора выщелачивания сорбцией с использованием сульфоксидного катеонита и образованием обедненного сернокислого раствора, проводят десорбцию РЗЭ и примесных компонентов из насыщенного катеонита путем его обработки раствором сульфата аммония с получением десорбата, осаждают РЗЭ и примесные компоненты из десорбата аммонийсодержащим осадителем в две стадии и отделяют осадок РЗЭ. Способ обеспечивает повышение эффективности извлечения РЗЭ. 5 з.п. ф-лы, 4 пр.
Изобретение относится к технологии комплексной переработки фосфогипса, получаемого в сернокислотном производстве минеральных удобрений из апатитового концентрата, и может быть использовано для производства концентрата редкоземельных элементов (РЗЭ), а также фосфогипса, пригодного для производства гипсовых строительных материалов и цемента
Изобретение относится к способам выделения концентрата редкоземельных элементов (РЗЭ) из экстракционной фосфорной кислоты, получаемой в дигидратном процессе переработки апатитового концентрата, и может быть использовано в химической и сопутствующих отраслях промышленности
Изобретение относится к технологии комплексной переработки фосфогипса, получаемого в сернокислотном производстве минеральных удобрений из апатитового концентрата, и может быть использовано для производства концентрата редкоземельных элементов (РЗЭ), а также гипсовых строительных материалов и цемента
Изобретение относится к способам выделения концентрата лантаноидов из экстракционной фторсодержащей фосфорной кислоты и может быть использовано в химической и сопутствующих отраслях промышленности
Изобретение относится к способу извлечения лантаноидов из апатитового концентрата и может быть использовано в химической промышленности

Изобретение относится к очистке фторсодержащего редкоземельного концентрата, получаемого при комплексной переработке апатита на минеральные удобрения, и может быть использовано на предприятиях, перерабатывающих хибинский апатитовый концентрат
Изобретение относится к способам выделения концентрата лантаноидов из экстракционной фторсодержащей фосфорной кислоты, получаемой в дигидратном процессе переработки апатитового концентрата, и может быть использовано в химической и сопутствующих отраслях промышленности
Изобретение относится к осадительным способам выделения концентрата лантаноидов из экстракционной фосфорной кислоты, содержащей кальций и другие примесные компоненты, получаемой в дигидратном процессе сернокислотного разложения апатитового концентрата, и может быть использовано в химической промышленности

Изобретение относится к технологии комплексной переработки фосфогипса, получаемого при сернокислотной переработке апатитового концентрата на минеральные удобрения

 


Наверх