Патенты автора Чуфистов Евгений Алексеевич (RU)

Изобретение относится к области гальванотехники и может быть использовано в машиностроении и смежных отраслях промышленности. Способ включает электрохимическое оксидирование поверхностей отверстий при протекании через них кислых или щелочных растворов электролитов без применения специальных ванн, исключительно внутри самих отверстий с формированием на поверхностях плотных покрытий, преимущественно состоящих из оксидов вентильных металлов изделий, а также последующее наполнение сформированных покрытий кипящей дистиллированной водой и ее паром. Оксидирование осуществляют после введения в отверстия специальных противоэлектродов в виде гибких тросов из коррозионно-стойких сталей, на которые по центральным сквозным отверстиям напрессованы инертные по отношению к растворам изоляторы для исключения возможности контакта тросов и изделий. Наполнение покрытий осуществляют для уменьшения их пористости путем кипячения в заглушенных отверстиях дистиллированной воды, заполняющей отверстия наполовину. Технический результат: способ позволяет получать покрытия, у которых значения толщины и эксплуатационных свойств в средних зонах составляют не менее 75 % от значений толщины и эксплуатационных свойств вблизи наружных поверхностей. 8 ил., 2 табл., 2 пр.

Изобретение относится к области гальванотехники и может быть использовано в машиностроении и смежных отраслях промышленности. Способ включает электрохимическое оксидирование продолжительностью 30-100 минут в реверсивных потоках кислых или щелочных растворов электролитов, при этом оксидирование осуществляют без применения специальных ванн, устанавливая детали внутри противоэлектродов из нержавеющей стали, в полостях, формы которых соответствуют формам деталей, а размеры превышают соответствующие наружные размеры деталей на 4-10 мм, при этом через данные полости пропускают растворы электролитов, обеспечивая их расход от 0,2 до 5,0 л на 1 дм2 площади оксидируемых поверхностей деталей и изменяя направление их течения на противоположное, спустя половину времени оксидирования. Технический результат: получение качественных равномерных покрытий на поверхностях деталей с нетехнологичными участками поверхностей. 2 ил., 2 табл.

Изобретение относится к области гальванотехники, в частности к анодированию и микродуговому оксидированию поверхностей сквозных отверстий изделий из сплавов вентильных металлов, и может быть использовано в машиностроении. Способ включает электрохимическое оксидирование в кислых или щелочных растворах продолжительностью 30-100 мин при подаче растворов в отверстия, при этом оксидирование осуществляют внутри самих отверстий, оси которых устанавливают вертикально и спустя половину времени обработки переустанавливают изделия с поворотом на 180° в вертикальной плоскости, при этом в отверстиях фиксируют являющиеся по отношению к изделиям противоэлектродами стержни из нержавеющей стали, у которых форма поперечных сечений соответствует форме поперечных сечений отверстий, а размеры поперечных сечений стержней на 4-10 мм меньше, чем соответствующие размеры поперечных сечений отверстий, и под давлением снизу вверх подают растворы в зазоры между поверхностями отверстий и стержней при ламинарном режиме течения растворов, поддерживая их расход в интервале 0,2-5,0 л/мин на 1 дм2 площади обрабатываемых поверхностей. Технический результат: получение оксидных покрытий на поверхностях сквозных отверстий, имеющих значения толщины и эксплуатационных свойств в средних зонах отверстий не менее 85% соответственно от значений толщины и эксплуатационных свойств вблизи наружных поверхностей изделий, причем без применения ванн электрохимического оксидирования. 2 табл., 3 ил., 2 пр.

Изобретение относится к области гальванотехники и может быть использовано в машиностроении. Способ включает электрохимическое оксидирование в ваннах с растворами кислых и щелочных электролитов в течение 40-100 мин с откачиванием растворов из отверстий через жиклеры - противоэлектроды из нержавеющей стали, при этом сначала оксидирование осуществляют, заглушив сквозные отверстия с одной стороны и вставив с противоположной стороны жиклеры для откачивания раствора, затем аналогично оксидируют детали, заглушив сквозные отверстия с другой стороны, при этом заглушки имеют полусферические полости с радиусами, равными половинам средних размеров нормальных сечений отверстий, и устанавливают их так, чтобы полости располагались в продолжении отверстий, жиклеры вставляют в отверстия с зазорами 1-4 мм, а расход проходящего через отверстие раствора задают так, чтобы его объем между поверхностями жиклера, отверстия и заглушки полностью обновлялся в течение 0,5-10,0 с, далее детали электрохимически оксидируют без заглушек и жиклеров. Технический результат - повышение толщины, равномерности, пробойного напряжения и электрического сопротивления покрытий, формируемых на поверхностях сквозных отверстий деталей. 4 табл., 2 ил.

Изобретение относится к области гальванотехники и может быть использовано в машиностроении и других отраслях промышленности. Способ включает химическую подготовку поверхностей деталей, флюсование в расплавах хлоридов щелочных и щелочноземельных металлов при температуре 700…800°C, жидкостное алитирование в расплаве электротехнического алюминия при температуре 730…760°C с последующим охлаждением до температуры 200…300°C, оксидирование и нагрев в три приема с выдержкой по 3…5 мин - сначала до 260…270°C, затем до 460…470°C и далее до 620…640°C, при этом детали оксидируют в анодно-катодном микродуговом режиме 20…25 мин при плотности тока 15…20 А/дм2 в растворе, содержащем едкое кали 4…6 г/л с низкомодульным жидким стеклом 4…6 г/л или едкое кали 6…8 г/л с борной кислотой 30…50 г/л, а также мелкодисперсный корунд 40…60 г/л и оксид хрома 1…2 г/л, при оксидировании деталям, подключенным к одному выходу источника тока, сообщают поступательные и вращательные движения, а на их обрабатываемые поверхности через распылители из нержавеющей стали, подключенные к противоположному выходу источника тока, под давлением подают кислород при температуре 5…15°C и воздействуют ультразвуком. Способ позволяет повысить твердость, износостойкость и электросопротивление покрытий. 4 ил.,2 табл., 1 пр.

Изобретение относится к области обработки поверхностей стальных деталей и может быть использовано в машиностроении и других отраслях промышленности. Способ включает оксидирование деталей в безыскровом режиме в кислом растворе, дальнейшую выдержку в кипящем водном растворе едкого натра 0,2-0,4 г/л в течение 40-50 минут и последующий нагрев, при этом проводят химическую подготовку поверхностей деталей, затем флюсование в расплавах хлоридов щелочных и щелочноземельных металлов при температуре 700-800°С, далее жидкостное алитирование в расплаве электротехнического алюминия при температуре 730-760°C в течение 5-6 минут с последующим быстрым охлаждением до температуры 300-400°C, затем в течение 15-25 минут детали оксидируют в кислом растворе, при этом при приготовлении раствора в качестве растворителя используют деионизированную воду, а дальнейший нагрев выполняют в три приема, сначала изделия нагревают до температуры 260-270°C и выдерживают в течение 3-5 минут, затем нагревают до температуры 460-470°C и выдерживают в течение 3-5 минут, далее нагревают до температуры 620-640°C и выдерживают в течение 3-5 минут. Технический результат: получение на деталях из конструкционных низкоуглеродистых сталей керамических покрытий, имеющих хорошее сцепление с основой и свойства, близкие к свойствам покрытий, формируемых на деталях из алюминия и его деформируемых сплавов. 2 табл., 3 ил. 1 пр.

Изобретение относится к области гальванотехники, в частности к электрохимическому оксидированию в растворах электролитов, и может быть использовано в машиностроении, приборостроении и других отраслях промышленности. Способ включает оксидирование изделий из алюминия и его сплавов в кислых растворах в течение 30-50 мин, дальнейшую выдержку в кипящем водном растворе едкого натра 0,2-0,4 г/л в течение 40-50 мин и последующий нагрев, при этом в качестве растворителя в кислых растворах используют деионизированную воду, а последующий нагрев осуществляют в три приема, при этом сначала изделия нагревают до температуры 260-270 °С и выдерживают в течение 3-5 минут, затем нагревают до температуры 460-470 °С и выдерживают в течение 3-5 мин, а далее нагревают до температуры 530-545 °С и выдерживают в течение 8-15 мин. Технический результат - увеличение толщины покрытий не менее чем на 10%, повышение их электрического сопротивления не менее чем на 8%, повышение их коррозионной стойкости в нейтральных и кислых средах не менее чем на 5%, сокращение времени выдержки изделий с покрытиями при нагреве примерно на 50%. 1 табл., 1 пр., 1 ил.

Изобретение относится к области восстановления и ремонта металлических изделий и может быть использовано в машиностроении, приборостроении и других отраслях промышленности

Изобретение относится к области гальванотехники и может быть использовано в машиностроении, приборостроении и других отраслях промышленности

Изобретение относится к области гальванотехники

Изобретение относится к области гальванотехники

Изобретение относится к области гальванотехники и может быть использовано в машиностроении и приборостроении

Изобретение относится к области микродугового оксидирования

Изобретение относится к области обработки поверхностей изделий и может использоваться в машиностроении, приборостроении и других отраслях промышленности

Изобретение относится к области гальванотехники и может быть использовано в машиностроении и приборостроении

Изобретение относится к области гальваностегии, в частности к микродуговому оксидированию, и может быть использовано в машиностроении и приборостроении

 


Наверх