Патенты автора Нахов Сергей Федорович (RU)

Группа изобретений относится к области приборостроения, а именно к способам испытаний поплавковых гироскопических датчиков угловой скорости (ДУС). Способ проверки дефекта опор гироузла в поплавковом гироскопическом датчике угловой скорости (ДУС) содержит этапы, на которых устанавливают ДУС на углозадающем устройстве так, что ось опор гироузла горизонтальна; задают постоянное значение температуры в приборе, отличное от температуры нулевой плавучести гироузла; включают усилитель обратной связи ДУС; задают n значений угла поворота ДУС вокруг горизонтально ориентированной оси опор гироузла в одном направлении отсчетов круговой шкалы; после задания каждого угла измеряют выходной сигнал ДУС; задают те же n значений угла поворота ДУС вокруг горизонтально ориентированной оси опор гироузла в противоположном направлении отсчетов круговой шкалы, после задания каждого угла повторно измеряют выходной сигнал ДУС; находят угол трения в опорах ψn; если ψn≤μ в процессе проверки, где μ - норма коэффициента трения для трущейся пары опор гироузла, делают вывод об отсутствии дефекта опор гироузла в ДУС; если значения ψn уменьшаются в процессе проверки, делают вывод о качественной приработке опор гироузла в ДУС. Технический результат – получение оценки проявлений дефекта по выходным сигналам ДУС, измеренным на этапах его изготовления и испытаний. 2 н.п. ф-лы, 5 ил.

Устройство может быть использовано в метрологии и приборостроении. Устройство имеет корпус, опорную шайбу, прижимную шайбу и винт. Корпус имеет присоединительную поверхность для установки на угломерные приборы и опорную плоскость для многогранной призмы (МП). Опорная шайба выполнена с возможностью одновременного контакта с опорной плоскостью устройства и базовой поверхностью МП. Корпус имеет резьбовую поверхность по центру опорной плоскости, а винт сопряжен с резьбовой поверхностью корпуса и установлен с возможностью приложения усилия к прижимной шайбе, выполненной с возможностью передачи усилия к МП. Опорная плоскость корпуса выполнена с номинальным углом отклонения от перпендикулярности к оси устройства не меньше половины предела допуска отклонения от перпендикулярности измерительных граней к базовой поверхности МП, опорная шайба выполнена с такой же величиной номинального угла схождения плоскостей. Между прижимной шайбой и головкой винта установлен шарикоподшипник. Технический результат - повышение жесткости прикрепления и стабильности углов фиксации МП относительно вала угломерных установок поворотного стола. 4 ил.

Изобретение относится к области измерительной техники, в частности к испытательному оборудованию, и предназначено для аттестации и верификации преобразователей инерциальной информации (ДУС, акселерометров, гироскопических устройств различного назначения), систем навигации (платформенных, бесплатформенных и др.), стабилизации и ориентации, в методах контроля которых предусмотрены последовательные или одновременные развороты за заданное время по двум осям на углы не превышающие ±360°. Двухосный поворотный стенд содержит основание, установочную платформу, закрепленную на двухосном подвесе, приводы и фотоэлектрические датчики угла, расположенные по осям внутренней и внешней рамы подвеса, блок питания, управления и контроля. Дополнительно введены две демпфирующие муфты; в качестве приводов использованы шаговые двигатели с червячными редукторами. Привод каждой оси снабжен своим контроллером управления, обеспечивающим независимое управление. На основании, рамах и платформе предусмотрены специальные площадки, обеспечивающие контроль ориентации проверяемого прибора. Введены также кронштейн с разгрузочным устройством для закрепления штатных кабелей испытуемых приборов, эквивалент проверяемого прибора, обеспечивающий контроль точности разворота, концевые выключатели и стопорные механизмы, предотвращающие разворот рам более ±360°. Техническим результатом является создание простого и надежного двухосного стенда, предназначенного для обеспечения требуемой последовательности поворотов проверяемых приборов при проведении испытаний, с установкой в заданные угловые положения по углу крена и тангажа в пределах ±360°. 1 з.п. ф-лы, 5 ил.

Изобретение относится к измерительной технике, а именно к способам и устройствам проверки гиромотора (ГМ) с шарикоподшипниками (ш/п) в опорах ротора, и может быть использовано в производстве гироскопических приборов. Способ заключается в том, что фиксируют статор ГМ в устройстве проверки, производят в одном направлении число оборотов ротора, не меньше наименьшего целого, кратного величине отношения угла поворота ротора к углу поворота сепаратора в шарикоподшипниках ГМ, регистрируют значения радиальных перемещений обода ротора, возникающих в результате каждого оборота ротора, и по величине значений судят о качестве сборки системы сепаратора в шарикоподшипниках ГМ. Устройство реализации способа содержит корпус, выполненный с возможностью прикрепления статора ГМ, средство фиксации ротора ГМ и бесконтактный емкостной датчик, обкладками которого являются обод ротора ГМ и пластина, закрепленная на корпусе с зазором к ободу ротора, электрически связанные с клеммами входа измерителя емкости. Технический результат заключается в исключении необходимости расхода ресурса работы ГМ и снижении затрат времени на проведение проверки. 2 н. и 1 з.п. ф-лы, 2 ил.

Способ обеспечения линейности масштабного коэффициента маятникового широкодиапазонного акселерометра компенсационного типа относится к измерительной технике и может быть использован в области производства приборов для измерения линейного ускорения. В процессе наладки устанавливают акселерометр на центрифугу, задают последовательно ряд линейных ускорений в диапазоне измерения акселерометра, измеряют выходной сигнал акселерометра в зависимости от величины заданного линейного ускорения, корректируют параметры системы, обеспечивая линейность зависимости выходного сигнала от заданного линейного ускорения. Согласно изобретению после измерения последовательности значений зависимости выходной информации Qвых n от заданных линейных ускорений an=g⋅n, где n - значение перегрузки, определяют значения корректирующих коэффициентов Ккорр(n)=Qвых 1⋅n/Qвых n, где Qвых 1 - выходная информация при действии линейного ускорения a1=g, Qвых 1⋅n - значение выходной информации, которое должно было быть получено при условии линейности масштабного коэффициента; посредством внешнего компьютера выполняют аппроксимацию функции Ккорр(n), вводят в память микроконтроллера обратной связи акселерометра данные аппроксимирующего полинома, при эксплуатации акселерометра определяют микроконтроллером частичные отрезки полинома, к которым относятся измеренные акселерометром ускорения, определяют посредством микроконтроллера для измеренных ускорений корректирующие коэффициенты и выполняют корректировку микроконтроллером измеренной выходной информации путем ее умножения на соответствующие корректирующие коэффициенты. Технический результат изобретения – обеспечение линейности масштабного коэффициента широкодиапазонного маятникового акселерометра компенсационного типа. 5 ил.

Способ проверки отсутствия перерывов контактирования между щетками и кольцами в коллекторном токоподводе и устройство для его реализации относятся к контрольно-измерительной технике и могут быть использованы при проверке отсутствия перерывов контактирования между кольцами коллектора и щетками в цепях коллекторного токоподвода (ТП). В способе проверки отсутствия перерывов контактирования между щетками и кольцами в коллекторном токоподводе (ТП), заключающемся в одновременном пропускании через электрические цепи вращающегося коллектора контрольных высокочастотных импульсов, регистрации контрольных импульсов и импульсов, прошедших через цепи ТП, определении разности между этими импульсами, по которой судят о исправности цепей, для чего формируют пары четных и нечетных цепей ТП с замкнутыми щетками, в указанных парах одними кольцами образуют входную группу, другими кольцами образуют выходную группу; на входную группу и эталонный счетчик подают контрольные импульсы, а с выходной группы прошедшие через ТП импульсы подают на соответствующие контрольные счетчики, выполняют вращение ТП, в счетчиках производят счет импульсов при совершении ТП не менее одного оборота, результаты счета подают в микропроцессор, в котором определяют разности между числом контрольных импульсов и числом импульсов, прошедших через ТП, если разности не превышают допустимую величину, соответствующие пары цепей ТП признают исправными, если разности превышают допустимую величину, то применяют иное формирование пар цепей и аналогично проверяют пары цепей ТП и по результатам проверки определяют неисправные цепи ТП в парах. Техническим результатом изобретения является возможность проверки различных ТП, в том числе и малогабаритных, работающих в режимах передачи микротоков, малые затраты времени на контроль, повышение надежности и достоверности результатов контроля путем автоматизации процесса испытаний, повышение технологичности, снижение номенклатуры используемого оборудования, упрощение схемы испытаний. 2 н.п. ф-лы, 2 ил.

Способ обеспечения линейности масштабного коэффициента маятникового акселерометра компенсационного типа относится к измерительной технике. Способ основан на использовании цифровой обратной связи, реализуемой микроконтроллером, в котором программным способом реализован ШИМ; ШИМ формирует последовательность рабочих импульсов, длительность которых равна τраб(n⋅T0), а таймер микроконтроллера формирует два равных по величине вспомогательных импульса длительностью τвсп и две равные по величине паузы длительностью τпауз. В способе задается правило выбора длительности интервала рабочего импульса τраб(n⋅T0), длительности вспомогательных импульсов и пауз на «n»-м такте дискретизации, а также правило взаимного размещения на каждом «n»-м такте дискретизации рабочего, вспомогательных импульсов и пауз. В начале каждого «nТ0»-го такта дискретизации размещают первый вспомогательный импульс тока; к этому вспомогательному импульсу тока присоединяют рабочий импульс; через определенный промежуток времени на интервале Т0 размещают второй вспомогательный импульс, при этом знак первого вспомогательного импульса совпадает со знаком рабочего импульса, а знак второго вспомогательного импульса противоположен знаку рабочего импульса. Среднее значение тока Iср, поступающего в обмотку датчика момента, выражается через постоянную по величине амплитуду тока в импульсе Iа, длительность рабочего импульса τраб(nТ0) и период Т0 работы ШИМ, т.е. Iср=Iа⋅τраб(nТ0)/Т0. Произведение Iа⋅τраб(n⋅Т0) - это площадь идеального импульса прямоугольной формы, которая искажается переходными процессами на передних фронтах тока в обмотку датчика момента. Требуемая линейность преобразования может быть достигнута, если в течение периода ШИМ подавать два одинаковых вспомогательных импульса разной полярности, а к одному из них присоединять рабочий импульс длительности τраб(nT0), то переходные процессы не будут искажать площадь рабочего импульса Iа⋅τраб(nТ0), т.к. переходные процессы на передних фронтах импульсов взаимно компенсируются с определенной точностью, а величина среднего за период Т0 тока, поступающего в обмотку датчика момента, будет пропорциональна только длительности рабочего импульса, т.е. измеряемому линейному ускорению. Техническим результатом изобретения является обеспечение линейности масштабного коэффициента маятникового акселерометра компенсационного типа. 1 табл., 6 ил.

Изобретение относится к измерительной технике и может быть использовано в области приборов для измерения линейного ускорения. Сущность изобретения заключается в том, что обеспечивают изменение значения коэффициента передачи регулятора в микроконтроллере от Крег до Kрегmax по закону, для чего на каждом шаге дискретизации выполняют измерение и сравнение в микроконтроллере напряжения U на входе АЦП усилителя с пороговым значением Uпор; при значениях напряжений, меньших либо равных Uпор, для организованного внутри микроконтроллера ШИМ-модулятора формируют в микроконтроллере цифровой входной сигнал для ШИМ-модулятора, для текущего значения напряжения U при значении коэффициента передачи регулятора Крег; обеспечивают формирование ШИМ-модулятором последовательности импульсов постоянной амплитуды и определенной длительности; определяют в микроконтроллере тот шаг дискретизации, на котором U больше Uпор, обеспечивают на последующих шагах дискретизации формирование увеличенного цифрового сигнала U*ув, для увеличенного коэффициента передачи, что обеспечивает увеличение длительности импульсов до определенной величины τув; обеспечивают соответствующее увеличение длительности открытого состояния, определяемого величиной τув, переключателя тока усилителя мощности, что обеспечивает поступление с выхода усилителя мощности в обмотку датчика момента акселерометра последовательности импульсов тока стабилизированной амплитуды и увеличенной длительности, определяют тот шаг дискретизации, на котором на входе АЦП напряжение U меньше либо равно Uпор, после чего обеспечивают возврат системы обратной связи к режиму работы со значением коэффициента передачи, равным Крег. Технический результат – обеспечение виброустойчивости маятниковых акселерометров с цифровой обратной связью при действии линейных ускорений и вибраций любого характера и любой амплитуды, величина которых не была прогнозирована на этапе проектирования прибора. 2 н.п. ф-лы, 6 ил.

Изобретение относится к измерительной технике, к устройствам для задания и измерения углов ориентации изделий приборостроения при их изготовлении и контроле, и может быть использовано в любой другой области при необходимости точного задания и измерения углов. Заявлен прецизионный поворотный стол, содержащий корпус, шпиндель в подшипниках корпуса, выполненный с возможностью закрепления внешних объектов, червячный привод шпинделя. Согласно изобретению введена контрольно-измерительная система, содержащая датчик угла поворота и радиальных перемещений, последовательные цепи: оптическая головка датчика - устройство интерполяции - блок преобразования информации - процессорное устройство, электропроводная пластина датчика - преобразователь емкость-код - устройство ввода - процессорное устройство, электромагнитный электродвигатель/электромагнитный зажим шпинделя - соответствующие коммутаторы - соответствующие широтно-импульсные формирователи - процессорное устройство. Техническим результатом является повышение точности, производительности измерений и расширение области применения. 1 ил.

Изобретение относится к области обеспечения предприятий прогнозной информацией о выпуске значительного количества продукции одной разновидности. Технический результат - создание виртуальной системы управления выпуском однородной продукции предприятия, позволяющей повысить достоверность прогноза количества выпускаемой продукции и, таким образом, улучшить эффективность управления производством. Виртуальная система состоит из вычислительного комплекса с базой данных; подсистемы получения информации и управления; магистрали интерфейсов; радиочастотных идентификаторов изделий выпускаемой продукции; считывателей идентификационных данных об изготовляемых изделиях; устройств связи; производственного и виртуально-компьютерного комплекса; программного блока; трех масштабирующих контроллеров; устройства для хранения готовых изделий; блока поставки готовых изделий. Производственный комплекс образован из двух производственных модулей: одного - с повышенным, а другого - с пониженным на эту же величину планом выпуска изделий, каждый из которых состоит из последовательно соединенных программного, динамического и накопительного блоков, счетчика и устройства хранения готовых изделий, снабженных радиочастотными идентификаторами, зафиксированными через считыватель в центральном компьютере. 1 ил.

Изобретение относится к измерительной технике, а именно к средствам измерения вибрационных реактивных моментов гиромоторов. Стенд содержит подвес, камеру с возможностью закрепления гиромотора экваториальной либо полярной осями вдоль вертикальной оси подвеса, первый и второй магнитоэлектрические датчики, установленные соосно в корпусе стенда, измерительный усилитель, усилитель мощности, нагрузкой которого является обмотка второго датчика, и токоподводы, противоположные концы которых через контактные платы соединены с камерой и корпусом. При этом обмотка первого датчика соединена через измерительный усилитель со средством измерения сигнала, подвес соединен с камерой и установлен в подшипниках корпуса, токоподводы выполнены в виде пружин с возможностью изменения коэффициента жесткости. Дополнительно в конструкцию введен узкополосный фильтр, выходом соединенный с входом усилителя мощности, а входом соединенный с выходом измерительного усилителя, при этом фильтр обеспечивает усиление либо подавление отдельной гармоники сигнала с выхода измерительного усилителя. Технический результат заключается в повышении точности контроля вибраций гиромотора. 4 ил.

Изобретение относится к области электротехники и может быть использовано для настройки вентильных электродвигателей. Техническим результатом является обеспечение угловой стабильности момента двигателя. В способе настройки вентильный электродвигатель, представляющий собой моментный двигатель постоянного тока, устанавливают в настроечный стенд, обеспечивающий заторможенный режим и поворот ротора двигателя, подают управляющее напряжение на входную обмотку датчика положения, при этом согласно изобретению разворачивают ротор двигателя на угол, при котором сигнал с синусной выходной обмотки датчика положения равен нулю, подают сигнал смещения на дополнительный вход усилителя синусного канала, при котором остаточный сигнал на выходе усилителя равен нулю, измеряют пусковой момент косинусного канала двигателя и по отношению момента к управляющему напряжению на входной обмотке датчика положения определяют коэффициент передачи косинусного канала. Аналогичным образом определяют коэффициент передачи синусного канала. Затем устанавливают сопротивления регулировочных резисторов усилителей косинусного и синусного каналов так, чтобы отношение сопротивлений регулировочных резисторов косинусного и синусного каналов было равно обратному отношению коэффициентов передачи этих каналов. 3 ил.

Изобретение относится к измерительной технике, а именно к средствам измерения угловых скоростей в системах управления движущимися объектами. Технический результат - расширение функциональных возможностей. Для этого измеритель содержит гироблок, усилитель обратной связи, содержащий предварительный усилитель, фазочувствительный выпрямитель, корректирующий контур с интегратором, выполненным на первом операционном усилителе, усилитель мощности, нагрузочный резистор и источник питания, при этом к обмотке датчика момента гироблока подсоединены термошунты. Корректирующий контур выполнен в виде последовательного соединения интегро-дифференцирующего звена и сумматора, интегро-дифференцирующее звено с зависящей от температуры форсирующей постоянной времени состоит из интегратора и усилительного звена, подключенного параллельно интегратору; усилительное звено состоит из второго операционного усилителя и обратной связи. 6 ил., 2 табл.

Изобретение относится к измерительной технике, и может быть использовано для определения параметров кварцевых маятниковых акселерометров. Согласно способу акселерометр располагают в первом положении на подвижном основании, при котором ось чувствительности пластины акселерометра лежит в плоскости горизонта перпендикулярно горизонтальной оси вращения основания, при этом подают калиброванные по уровню и знаку электрические сигналы Uсм на первый вход устройства обратной связи, для каждого сигнала Uсм измеряют сигнал Uвых на выходе и сигнал U с м ∗ смещения на втором входе устройства обратной связи и определяют зависимость Uвых от U с м ∗ , (статическую характеристику акселерометра «выходной сигнал» - «сигнал смещения»), поворачивают основание на малый угол и повторяют указанные действия, затем вычисляют параметры акселерометра. Техническим результатом является возможность прогнозирования стабильности положения оси чувствительности при смещении центра масс чувствительного элемента из-за дрейфа нуля со стороны входа устройства обратной связи, а также уровня выходного сигнала акселерометра в отсутствие ускорения силы тяжести. 4 ил.

Изобретение относится к измерительной технике и может быть использовано для определения параметров кварцевых маятниковых акселерометров. Согласно заявленному способу в одну из точек замкнутого контура акселерометра подают синусоидальные, калиброванные сигналы Uг. Для всего требуемого диапазона частот и амплитуд сигналов Uг измеряют выходной сигнал смещения Uсм и выходной сигнал Uвых устройства обратной связи и по отношению их амплитуд к амплитуде сигнала Uг определяют динамические характеристики акселерометра. По первому варианту подают сигнал Uг в датчик силы либо через эталонную нагрузку, либо через дополнительный вход усилителя мощности цифрового устройства обратной связи, соединяя свободный вывод эталонной нагрузки с общей шиной, а сигналы Uсм и Uвых измеряют соответственно со стороны выходов следующих элементов цифрового устройства обратной связи: усилителя-преобразователя и интегро-дифференциирующего усилителя. По второму варианту подают сигнал Uг в датчик силы через эталонную нагрузку, а сигнал Uвых измеряют со стороны выхода интегро-дифференциирующего усилителя устройства обратной связи и подают на активный фильтр, с выхода которого измеряют выходной сигнал U в ы х * . Сигнал Uсм измеряют со стороны выхода усилителя-преобразователя устройства обратной связи. Технический результат - повышение точности измерения динамических характеристик акселерометра. 2 н.п. ф-лы, 3 ил.

Изобретение относится к измерительной технике, а именно к средствам измерения линейных ускорений в системах управления движущимися объектами, например к средствам измерения линейного ускорения в бесплатформенных инерциальных навигационных системах управления космическими объектами. Целью изобретения является повышение точности измерений, уменьшение времени готовности и энергопотребления за счет снижение влияния температуры на параметры измерителя линейного ускорения. Измеритель содержит кварцевый компенсационный маятниковый акселерометр, преобразователь напряжения в частоту, термосистему, содержащую первую мостовую схему резисторов, в одно из плеч которой включен первый термодатчик, установленный между катушкой и корпусом акселерометра, усилитель мощности, катушку обогрева, охватывающую корпус акселерометра, преобразователь содержит нагрузочный резистор Roc, который подключен к выходу усилителя обратной связи, генератор синхрочастоты, интегратор, резистор заряда Rзар, две симметричные цепи преобразования положительной и отрицательной информации, эталонный источник напряжения, компаратор, резистор разряда Rразр, переключающее устройство, содержащее электронный ключ, триггер, счетчик тактовых импульсов, и формирователь импульсной выходной информации. Отличительной частью изобретения является система аппаратной компенсации температурных погрешностей, содержащая вторую мостовую схему резисторов, второй термодатчик, установленный внутри корпуса акселерометра и включенный в одно из плеч второй мостовой схемы, измерительный усилитель, инвертор и четыре резистора R1-4. Термоинвариантность основных параметров измерителя линейных ускорений - масштабного коэффициента и смещения нуля, построенного на кварцевом маятниковом акселерометре и имеющего поэтому существенную нелинейную зависимость указанных параметров от температуры, обеспечивается за счет того, что с помощью известной термосистемы внутри акселерометра обеспечивается диапазон температур, соответствующий линейному участку графика зависимости от температуры масштабного коэффициента и смещения нуля, а с помощью введенной системы аппаратной компенсации в определенные точки схемы преобразователя напряжение-частота подаются компенсирующие напряжения, функционально зависящие от текущего значения температуры внутри акселерометра и от температурных коэффициентов масштабного коэффициента и смещения нуля акселерометра. 6 ил.

Изобретение относится к измерительной технике, а именно к средствам измерения вибрационных реактивных моментов гиромоторов. Стенд содержит подвес, камеру, допускающую закрепление гиромотора экваториальной либо полярной осями вдоль оси подвеса, средство измерения вибраций в виде первого магнитоэлектрического датчика, обмотки которого закреплены в корпусе устройства в поле магнитов, установленных на оси подвеса, и состыкованы через измерительный усилитель со средством измерения сигнала и усилителем мощности, нагрузкой которого являются обмотки второго магнитоэлектрического датчика, установленного соосно с первым датчиком, подвес выполнен в виде вала, соединенного с камерой и вертикально установленного в подшипниках корпуса, расположенного на подставке; токоподводы гиромотора выполнены в виде трех пружин, противоположные концы которых через контактные платы стыкуются с камерой и корпусом стенда. Техническим результатом является повышение точности и технологичности контроля вибрационных реактивных моментов гиромотора на этапе его изготовления. 4 ил.

Изобретение относится к гироскопической и контрольно-измерительной технике и может быть использовано при разработке волоконно-оптических измерителей угловой скорости (ВОИУС). Измеритель содержит два усилителя-преобразователя (УП1 и УП2), формирователь синхронизирующих импульсов (ФСИ), волоконный контур, два фазовых модулятора, установленных на концах волоконного контура, и оптически связанные входной разветвитель, поляризатор и контурный разветвитель, выходами оптически связанный с концами волоконного контура, деполяризатор, приемный модуль (ПМ), источник излучения, выход которого оптически связан через деполяризатор с входом входного разветвителя, фотоприемный модуль (ФПМ), своим фотодиодом оптически связанный с выходом входного разветвителя, фазочувствительный выпрямитель (ФЧВ), а также коммутатор, входами связанный с выходами УП1 и УП2. ВОИУС может быть использован в многоканальном исполнении с произвольно расположенными осями чувствительности. Изобретение обеспечивает снижение энергопотребления при многоканальном исполнении, а также снижение погрешности масштабного коэффициента. 7 ил.

Стенд предназначен для использования в измерительной технике. Стенд содержит корпус, вал, основную платформу, на которой установлен измеритель угловых скоростей, электродвигатель, первый усилитель мощности, кольцевой коллектор, дополнительную платформу, закрепленную на валу, на которой установлены шесть акселерометров и измерительный датчик угловой скорости; упругий торцевой токоподвод, содержащий верхнюю и нижнюю колодки, и золотые проводники подвода питания, два геркона, закрепленные на нижней колодке, взаимодействующий с герконами магнит, цилиндрическую втулку, подвешенную в корпусе на шарикоподшипниковых опорах соосно с валом, стержень. При этом верхняя колодка токоподвода закреплена на валу, а нижняя колодка - на цилиндрической втулке, ленточный торсион размещен в полости вала и прикреплен нижним концом к торцу полого участка вала, а верхним концом - к середине стержня. Механизм отслеживания содержит импульсный шаговый двигатель и зубчатую передачу, при этом шаговый двигатель закреплен на корпусе через амортизатор, выходное звено зубчатой передачи закреплено на цилиндрической втулке соосно с ней. Блок управления механизмом отслеживания состоит из первого микроконтроллера, драйвера управления и второго усилителя мощности, управляющего процессора. Также стенд содержит угловой энкодер, содержащий диск и две считывающие оптические головки, расположенные под углом 180° друг к другу. В стенд введены блок преобразования напряжения питания, блок преобразования информации, содержащий аналого-цифровой преобразователь, программируемую логическую интегральную схему, шину БПИ и второй микроконтроллер с интерфейсом, обеспечивающим дистанционную передачу информации, приемник сигналов. Технический результат - повышение точности воспроизведения угловых скоростей. 2 з.п. ф-лы, 5 ил.

Изобретение относится к области приборостроения и может быть использовано в системах контроля прецизионных гироскопических датчиков угловой скорости

Изобретение относится к измерительной технике и предназначено для испытаний измерителей угловых скоростей различного назначения

Изобретение относится к измерительной технике, а именно к средствам контроля датчиков угловой скорости (ДУС)

 


Наверх