Патенты автора Прохорович Владимир Евгеньевич (RU)

Изобретение относится к лазерной технике и может быть использовано в лазерах высокой мощности. Задачей изобретения является теплоотводящий элемент, обеспечивающий повышение эффективности теплоотвода от лазерного кристалла дискового лазера. Технический результат достигается за счет того, что теплоотводящий элемент дискового лазера выполнен в виде пластины из композиционного материала, содержащего алмаз 55-75% об, карбид кремния 20-40% об. и кремний 3-12% об., а на одной из поверхностей пластины нанесен слой кремния толщиной 30-800 мкм, отшлифованный до чистоты поверхности Ra не менее 0,01 мкм. Реализация предлагаемого технического решения позволяет создать теплоотводящий элемент дискового лазера, обеспечивающий эффективную теплопередачу от лазерного кристалла к теплоносителю. Высокая жесткость теплоотводящего элемента, за счет высокого модуля упругости композиционного материала, обеспечивает его стабильность к деформациям, что важно для повышения эффективности дискового лазера. 3 з.п. ф-лы, 1 ил.

Изобретение относится к сварочному производству и может быть использовано в устройствах контроля основных параметров сварки в качестве средства автоматизированного контроля температур. Техническим результатом является расширение информативных возможностей системы автоматизированного контроля температуры и состояния металла непосредственно в области нахождения сварочной головки во время процесса сварки и повышение качества сварного шва. Автоматизированный контроль температур при сварке реализуется путем использования двух датчиков температуры, сварочной головки с блоком управления ее режимами, измерительного блока, связанного с датчиками температуры и блоком управления. В качестве датчиков температуры применены ультразвуковые преобразователи, расположенные по обеим сторонам торцов свариваемых металлических листов и механически соединенные кронштейном между собой и со сварочной головкой с возможностью перемещения вдоль торцов свариваемых металлических листов. Причем главные акустические оси ультразвуковых преобразователей направлены на сварочную головку в направлениях, перпендикулярных торцам свариваемых металлических листов, а в качестве измерительного блока применен двухканальный ультразвуковой дефектоскоп. Технический результат - повышение достоверности автоматизированного контроля температур при сварке путем контроля температуры непосредственно в области расплавляемого сварочной головкой металла. 1 ил.

Использование: для контроля качества сварных соединений. Сущность изобретения заключается в том, что автоматизированный комплекс контроля качества сварных соединений содержит прижимы для его крепления на контролируемом изделии, искательную головку, механизм перемещения искательной головки, систему подачи контактной жидкости, включающей емкость с контактной жидкостью, насос и трубку, дистанционное дефектоскопическое оборудование, и оборудование питания, управления, обработки и регистрации информации, соединенное с искательной головкой, насосом и электродвигателями механизма перемещения электрическими кабелями, при этом он снабжен корпусом цилиндрической формы с уплотнительным кольцом на торцевой поверхности, в верхней части цилиндрической поверхности корпуса выполнено вентиляционное отверстие, в верхней и нижней частях цилиндрической поверхности корпуса установлены датчики наличия контактной жидкости, механизм перемещения искательной головки выполнен в виде вала проходящего в осевом отверстии плоской части корпуса через подшипник скольжения с магнитожидкостным уплотнением, с наружной стороны корпуса вал жестко соединен с редуктором, а электродвигатель, управляющий редуктором, выполнен реверсивным и содержит датчик угла поворота, с внутренней стороны корпуса на валу установлен рычаг, на конце которого укреплена искательная головка в виде раздельно-совмещенного пьезоэлектрического преобразователя с удлиненным акустическим экраном, соединенная электрическим кабелем, проходящим через полые каналы рычага и вала с дистанционным дефектоскопическим оборудованием и оборудованием питания, управления, обработки и регистрации информации, за рычагом на валу последовательно расположены: утолщение вала, упругий элемент и подшипник скольжения, на котором с возможностью вращения и перемещения в осевом направлении расположена пробка с магнитожидкостным уплотнением, пробка выполнена в виде жесткого фигурного диска с эластичным уплотнительным кольцом по его периметру, на торце вала со стороны пробки выполнена фиксирующая гайка, трубка для подачи контактной жидкости соединяет насос с нижней частью корпуса, насос дополнительно выполнен с возможностью перекачивания контактной жидкости из емкости с контактной жидкостью в корпус и обратно. Технический результат: повышение достоверности и производительности контроля сварных кольцевых швов. 1 ил.

Изобретение может быть использовано для получения сварных соединений из среднеуглеродистых среднелегированных броневых сталей. Сварочная проволока содержит компоненты в следующем соотношении, мас. %: хром 18,5-22,0, углерод 0,3-0,4, азот 0,1-0,2, алюминий 0,05-0,1, титан 0,08-0,2, железо – остальное. Сварочная проволока обеспечивает высокую пулестойкость сварных соединений. 3 ил., 1 пр.

Изобретение относится к акустике. Способ измерения скорости распространения головной ультразвуковой волны предполагает возбуждение и прием прошедших по изделию ультразвуковых импульсов, оцифровку импульсов, запись в компьютер и определение временных интервалов между этими импульсами. Головную акустическую волну возбуждают лазерным излучением, формируют лазерное пятно и соответствующий ему возбуждаемый акустический пучок, сформированный акустический пучок из генератора направляют под углом β, близким к первому критическому, через звукопровод к поверхности изделия, а затем принимают под углом - β двумя звукопроводами, разнесенными между собой и генератором на расстояние L. Звукопроводы выполняют в виде призм, изготовленных из синтетического полимера метилметакрилата. Устройство, реализующее предлагаемый способ, содержит генератор лазерных импульсов, оптико-акустический преобразователь, изделие, точки съема ультразвуковых импульсов первого и второго пьезоприемника, первый блок АЦП, компьютер, второй блок АЦП, тонкий иммерсионный слой контактной жидкости, звукопроводы. Технический результат - повышение разрешающей способности и точности измерения изменения скорости распространения головной ультразвуковой волны. 2 н.п. ф-лы, 2 ил.

Заявленные изобретения относятся к контрольно-измерительной технике, а именно к автоматическим средствам непрерывного мониторинга состояния конструкции стартового сооружения в процессе его эксплуатации. Система, реализующая предлагаемый способ, содержащий набор измерительных преобразователей, блок предварительной обработки сигналов, включающий плату аналого-цифрового преобразователя, линию связи - шину, устройство согласования сигналов - конвертер, пункт контроля, выполненный в виде компьютера, и связанные с последним дисплей, устройство звуковой сигнализации, условное изображение контролируемой конструкции с размещенными на ней цветными метками-индикаторами, планово-высотную геодезическую основу стартового сооружения и комплект контроля изменения полей давления температуры на поверхности защитного покрытия стартового сооружения. В качестве планово-высотной геодезической основы стартового сооружения принята сеть глубинных реперов в виде трех «кустов» и одного референтного пункта 14, расположенных равномерно вокруг стартового сооружения на расстоянии 60-80 метров от него, а также систему деформационных марок. Каждый «куст» включает три глубинных репера. В качестве комплекта контроля изменения полей давления и температуры на поверхности защитного покрытия стартового сооружения приняты датчики давления и температуры, размещенные на защитном покрытии стартового сооружения на одной видимой прямой линии. Технический результат заключается в повышении точности измерений и достоверности долговременного контроля конструкции стартового сооружения. 2 н.п. ф-лы, 4 ил.

Предлагаемое устройство относится к области подповерхностной радиолокации с использованием сверхширокополосных сигналов, а именно к устройствам определения расположения и формы неоднородностей и включений в строительных конструкциях и сооружениях и может найти применение в следующих областях: контрразведывательной деятельности по выявлению подслушивающих устройств; оперативно-розыскной деятельности правоохранительных органов; зондировании строительных конструкций с целью определения положения арматуры, пустот и других неоднородностей; зондировании особо важных строительных конструкций (взлетно-посадочных полос, аэродромов, стартовых площадок для запуска ракет, мостов, переходов, тоннелей метрополитена, вокзалов, стадионов, бассейнов и т.д.) с целью определения скрытых дефектов в них; зондировании завалов и разрушений после землетрясений, террористических взрывов и взрывов газа в процессе поисково-спасательных работ с целью обнаружения живых людей под завалами и оперативного оказания им помощи. Технической задачей изобретения является расширение функциональных возможностей устройства путем обнаружения живых людей под завалами, возникшими в результате разрушения строительных конструкций и сооружений после взрывов и землетрясений. Устройство зондирования строительных конструкций содержит портативную ЭВМ 1, поверхность 2 строительной конструкции, электронный блок 3, антенный блок 4, высокочастотный генератор 5, контроллер 6, приемник 7, передающую антенну 8, приемную антенну 9, объект 10, триггер 11, линии задержки 12 и 14, усилитель 13, блок 15 вычитания, интегратор 16, блок 17 деления, блок 18 сравнения, блок 19 формирования эталонного напряжения, аналого-цифровой преобразователь 20, интерфейс 21, ключ 22, жидкокристаллический индикатор 23, звуковой индикатор 24, выключатель 25, квадратурный демодулятор 26, предварительные усилители 27 и 28, мультиплексоры 29 и 30, многоканальные полосовые фильтры 31 и 32, демультиплексоры 33 и 34, электронные короткозамыкающие ключи 35 и 36, низкочастотные фильтры 37 и 38. 1 ил.

Изобретение относится к области пожарной безопасности и обеспечивает обнаружение пожара на ранних стадиях тления и возгорания горючих материалов. Технический результат - повышение избирательности и помехоустойчивости приемного устройства путем подавления ложных сигналов (помех), принимаемых по дополнительным каналам. Устройство содержит датчик в виде, например, газового сенсора, согласующий усилитель, аналого-цифровой преобразователь, микропроцессор, формирователь световых и звуковых сигналов, световой сигнализатор, звуковой сигнализатор, формирователь модулирующего кода, задающий генератор, фазовый манипулятор, усилитель мощности и передающую антенну, а на принимающей стороне - для приема сложных фазоманипулированных (ФМн) сигналов содержит приемную антенну, усилитель высокой частоты, гетеродин, смеситель, усилитель промежуточной частоты, усилитель суммарной частоты, амплитудный детектор, ключ, демодулятор ФМн сигналов, перемножители, узкополосный фильтр, фильтр нижних частот и блок регистрации. 2 н.п. ф-лы, 6 ил.

Изобретение относится к автоматическим средствам периодического отслеживания состояния конструкции здания или инженерно-строительного сооружения в процессе его эксплуатации. Особенностью заявленной системы является то, что она снабжена ридером, а в качестве измерительных преобразователей использованы пассивные транспондеры на поверхностных акустических волнах, причем ридер содержит последовательно подключенные к выходу блока предварительной обработки сигналов синхронизатор, синтезатор частот, дуплексер, вход-выход которого связан с приемопередающей антенной, и n каналов обработки сигналов, каждый из которых содержит последовательно подключенные к выходу дуплексера полосовой фильтр, удвоитель фазы, делитель фазы на два, первый узкополосный фильтр и фазовый детектор, при этом к выходу первого узкополосного фильтра последовательно подключены перемножитель, второй вход которого соединен с соответствующим выходом синтезатора частот, второй узкополосный фильтр и измеритель девиации частоты. Техническим результатом является повышение эффективности измерений и долговременного контроля состояния конструкции здания или инженерно-строительного сооружения. 3 ил.

Использование: для лазерно-ультразвукового контроля качества паяных соединений. Сущность изобретения заключается в том, что генерируют с помощью импульсного лазера оптические импульсы, преобразуют их в акустический сигнал - последовательность ультразвуковых импульсов, образующих зондирующий ультразвуковой луч, облучают этим лучом исследуемый объект, принимают пьезоприемником отраженные от исследуемого объекта сигналы, анализируют их и по результатам анализа судят о внутренних дефектах объекта, при этом указанный акустический сигнал формируют в виде апериодической последовательности ультразвуковых импульсов длительностью от 5 до 20 нс с образованием зондирующего ультразвукового луча с диаметром в пределах от 0,6 до 1,0 мм. Технический результат: обеспечение возможности контроля качества паяных соединений тонких ячеистых двустенных металлических конструкций. 4 ил.

Изобретение относится к области неразрушающего контроля

Изобретение относится к ракетно-космической технике и может быть использовано для борьбы с цунами

 


Наверх