Патенты автора Тройников Владимир Иванович (RU)

Изобретение относится к области испытательной техники, в частности к испытаниям изделий космической техники на герметичность. В предлагаемом способе размещают контролируемое изделие в герметичном объеме накопления, заполненном воздухом при атмосферном давлении. Непрерывно перемешивают воздух в объеме накопления. Подключают к объему накопления средство измерения концентрации пробного газа в воздухе. Приготавливают смесь пробного и технологического газа, через равные промежутки времени вводят в объем накопления расчетное количество равных порций газовой смеси и регистрируют при помощи средства измерения повышение концентрации пробного газа в воздухе объема накопления. При этом об интенсивности переноса пробного газа в объеме накопления судят с учетом изменений концентрации пробного газа в объеме накопления, измеренных в промежутках между вводами порций газовой смеси, а об интенсивности воздухообмена объема накопления с окружающей атмосферой судят по отклонению повышения концентрации пробного газа в воздухе объема накопления от линейной зависимости от времени. Достигается повышение достоверности и производительности тестирования испытательной системы при контроле на герметичность. 1 ил., 1 табл.

Изобретение относится к испытаниям изделий космической техники, например, люков и уплотнений стыковочных агрегатов космических аппаратов, а также может быть применено в других областях техники. В предлагаемом способе образуют над испытываемым элементом (ИЭ) основную технологическую полость (ОТП) и охватывающую ее дополнительную ТП (ДТП), создают в обеих полостях контролируемое разрежение и размещают ИЭ с ОТП и ДТП в вакуумной камере. Определенным порядком заполнения ОТП и ДТП до испытательного давления контрольным (с примесью пробного) газом, а также – сообщения этих полостей с вакуумной камерой и соответствующими измерениями парциального давления пробного газа в камере определяют негерметичности внешнего рабочего участка ИЭ и герметизирующих элементов между ОТП и ДТП и между ДТП и объемом вакуумной камеры. Техническим результатом является повышение точности и надежности контроля герметичности изделий и тем самым увеличение сроков их безопасной эксплуатации. 1 ил.
Изобретение относится к области испытательной техники, в частности к наземной проверке космических аппаратов (КА) на работоспособность. Способ проведения тепловакуумных испытаний при наземной проверке КА на работоспособность включает помещение КА в вакуумную камеру, вакуумирование камеры, создание на поверхности КА рабочей температуры, включение аппаратуры КА и оценивание работоспособности КА. Перед включением аппаратуры КА с высокими требованиями к остаточному давлению в вакуумной камере дополнительно измеряют давление в непосредственной близости от указанной аппаратуры. При достижении допустимого значения давления в непосредственной близости от указанной аппаратуры ее включают и ведут оценку работоспособности КА при постоянном контроле за давлением в непосредственной близости от указанной аппаратуры. При повышении указанного давления выше допустимого значения аппаратуру выключают, продолжают вакуумирование камеры до достижения допустимого значения давления, включают аппаратуру и возобновляют оценку работоспособности аппаратуры КА. Достигается точность и достоверность результатов испытаний КА.
Изобретение относится к области испытательной техники, в частности, к наземной проверке космических аппаратов (КА). Способ имитации давления в вакуумной камере при наземной проверке КА на работоспособность, при котором помещают КА в вакуумную камеру, вакуумируют её и проверяют КА на работоспособность. Работоспособность проверяют при электрических включениях аппаратуры. Рассчитывают величину давления собственной внешней атмосферы КА в зависимости от высоты рабочей орбиты КА. Величину остаточного давления в вакуумной камере принимают равной расчетной величине давления собственной внешней атмосферы КА. При повышении величины давления собственной внешней атмосферы КА в вакуумной камере в процессе проверки КА на работоспособность поддерживают его величину на заданном уровне путем увеличения производительности вакуумной откачной системы. Достигается повышение достоверности результатов проверки КА на работоспособность.
Изобретение относится к области испытательной техники, в частности, к испытаниям изделий космической техники на герметичность, и может найти применение в таких областях техники, как газовая промышленность, атомное машиностроение, авиастроение. Способ испытаний изделий на герметичность включает размещение изделия в объеме накопления, заполненном воздухом при атмосферном давлении, герметизацию объема накопления, непрерывное перемешивание воздуха в объеме накопления, подачу контрольного газа и заполнение изделия контрольным газом до избыточного испытательного давления, измерение концентрации контрольного газа в объеме накопления, выдержку изделия под избыточным испытательным давлением контрольного газа, измерение концентрации контрольного газа, определение значения скорости роста концентрации контрольного газа в воздухе объема накопления и определение значения суммарной герметичности изделия по значениям скорости роста концентрации контрольного газа в воздухе объема накопления и величины свободного пространства объема накопления, при этом в качестве объема накопления используют рабочее помещение, которое оснащают шлюзовым помещением, внутри рабочего помещения размещают средства измерения концентрации контрольного газа в воздухе рабочего помещения, средства поиска мест течей в изделии, вентиляторы, испытательный персонал с изолирующими дыхательными аппаратами, в процессе заполнения изделия контрольным газом до избыточного испытательного давления при помощи средств поиска мест течей производят поиск мест течей в заправочных трубопроводах, в процессе выдержки изделия под избыточным испытательным давлением контрольного газа в случае определения значения суммарной герметичности изделия, превышающего допускаемое значение, при помощи средств поиска мест течей производят поиск мест течей в изделии и заправочных трубопроводах, а при определении значения суммарной герметичности изделия делают поправку, учитывающую газовыделение от изолирующих дыхательных аппаратов и воздухообмен рабочего помещения с окружающей рабочее помещение атмосферой. Техническим результатом изобретения является повышение производительности испытаний изделий на герметичность и, как следствие, качества испытаний, что увеличивает надежность изделий и долговечность их эксплуатации.
Изобретение относится к области испытательной техники, в частности к испытаниям изделий, например, космических аппаратов (КА) на обезгаживание в условиях, приближенных к эксплуатационным, и может быть использовано в космической технике при проведении испытаний комплектующих КА: аппаратуры, приборов, узлов конструкции, бортовой кабельной сети, экрановакуумной теплоизоляции. Обезгаживание комплектующих КА необходимо для того, чтобы исключить конденсацию продуктов газоотделения и испарения в вакууме от них на оптические и радиационные поверхности КА в полете и тем самым повысить работоспособность оптических и радиационных поверхностей КА. Способ обезгаживания элементов конструкции космических аппаратов в наземных условиях заключается в том, что помещают космический аппарат в тепловакуумную камеру с криогенными экранами, вакуумируют ее до заданного давления. Далее заполняют криогенный экран тепловакуумной камеры жидким азотом. Одновременно создают тепловой поток заданной температуры на поверхности космического аппарата. Поддерживают на поверхности космического аппарата заданную температуру и выдерживают космический аппарат при заданной температуре в тепловакуумной камере заданный промежуток времени. Для создания и поддержания на поверхности космического аппарата заданной температуры используют тепловой поток от имитатора солнечного излучения, регулируя его интенсивность. Включают бортовую аппаратуру космического аппарата, при этом поддерживают заданное давление в тепловакуумной камере на уровне ниже давления возникновения электрического разряда в вакууме при максимальном напряжении электропитания включенной бортовой аппаратуры космического аппарата. Измеряют с заданной периодичностью давление в тепловакуумной камере, при достижении стабильной величины которого измеряют значение установившегося суммарного потока натекания и газоотделения в тепловакуумной камере. После чего прекращают вакуумирование тепловакуумной камеры и выдержку космического аппарата в ней. Изобретение обеспечивает увеличение срока службы аппаратуры, имеющей в своем составе оптические и радиационные поверхности и получение количественной оценки дегазации.
Предложен способ заправки сжатым газом баллонов высокого давления пневмогидросистем (ПГС) космических аппаратов (КА) при испытаниях ПГС на герметичность. Задают постоянную скорость заправки изделия газом. Оценивают допустимые значения повышения температуры изделия и количества газа, которое необходимо подать в изделие с заданной постоянной скоростью заправки изделия газом, не превышая при этом допустимого значения температуры изделия. Оценивают длительность выдержки на установление теплового равновесия изделия с окружающей средой, которая должна быть сделана после подачи в изделие допустимого количества газа. В необходимое число этапов заправляют изделие газом до требуемого давления, подавая на каждом этапе в изделие допустимое количество газа. После каждого из этапов заправки изделия отсоединяют изделие от источника газа и делают выдержку на установление теплового равновесия изделия с окружающей средой, при этом измеряют давление газа в изделии в начале, конце, а также в течение каждой из выдержек в зависимости от времени. По завершении каждой из выдержек измеряют разность между значениями давления в изделии - в начале и конце выдержки, причем об установлении теплового равновесия изделия с окружающей средой в течение каждой из выдержек судят по установлению равновесного давления в изделии. 1 з.п. ф-лы.

Изобретение относится к области исследования устройств на герметичность и может быть использовано для определения негерметичности изделий, работающих под внешним давлением и внутренним избыточным давлением, например изделий космической техники. Сущность: вакуумируют средствами (1) вакуумирования внутреннюю полость изделия (4) через испытательную систему (5) до установившегося равновесного давления в изделии (4) и испытательной системе (5). Отсоединяют изделие (4) от испытательной системы (5), продолжая вакуумировать испытательную систему (5) средствами (1) вакуумирования. Измеряют первое установившееся равновесное парциальное давление компонента воздуха в испытательной системе (5), соответствующее поступлению в испытательную систему (5) собственного потока газоотделения и натекания. Причем в качестве компонента воздуха выбирают газ, содержащийся в воздухе и отличный от газов, использовавшихся для заполнения внутренней полости изделия (4) до избыточного испытательного давления при предыдущих испытаниях этого изделия (4) на герметичность. Подсоединяют к испытательной системе (5) калиброванную течь (7). Вакуумируют испытательную систему (5) с подсоединенной калиброванной течью (7). Подают через калиброванную течь (7) поток газа, в качестве которого используют поток воздуха. Измеряют установившееся равновесное парциальное давление компонента воздуха в испытательной системе (5), соответствующее поступлению в испытательную систему (5) собственного потока газоотделения и натекания и потока воздуха от калиброванной течи (7). Отсоединяют от испытательной системы (5) калиброванную течь (7). Соединяют изделие (4) с испытательной системой (5). Измеряют установившееся равновесное парциальное давление компонента воздуха, соответствующее поступлению в испытательную систему (5) потока от негерметичности изделия (4) и собственного потока газоотделения и натекания. Отсоединяют изделие (4) от испытательной системы (5). Измеряют второе установившееся равновесное парциальное давление компонента воздуха, соответствующее поступлению в испытательную систему (5) собственного потока газоотделения и натекания. По результатам измерений рассчитывают величину негерметичности изделия (4). Технический результат: повышение точности определения негерметичности изделий. 1 з.п. ф-лы, 2 ил.
Изобретение относится к способам исследования устройств на герметичность. Сущность: заполняют полость с высокими требованиями к степени суммарной герметичности до испытательного давления контрольным газом, содержащим пробный газ в высокой концентрации. Заполняют полость с низкими требованиями к степени суммарной герметичности до испытательного давления контрольным газом, не содержащим пробный газ, соблюдая ограничения на перепад давления между полостями. Определяют содержание пробного газа в пространстве, окружающем изделие, по которому измеряют степень суммарной герметичности полости с высокими требованиями к степени суммарной герметичности. Сбрасывают одновременно давление газов из обеих полостей, соблюдая ограничения на перепад давления между полостями. Вакуумируют одновременно обе полости. Заполняют обе полости до испытательного давления контрольным газом, содержащим пробный газ в концентрации, меньшей концентрации, использовавшейся для заполнения полости с высокими требованиями к степени суммарной герметичности, соблюдая ограничения на перепад давления между полостями. Определяют содержание пробного газа в пространстве, окружающем изделие, по которому измеряют степень суммарной герметичности обеих полостей. Степень суммарной герметичности полости с низкими требованиями к степени суммарной герметичности определяют как разность значений степени суммарной герметичности обеих полостей и степени суммарной герметичности полости с высокими требованиями к степени суммарной герметичности. Технический результат: снижение трудозатрат при измерении степени суммарной герметичности многополостных изделий.

Изобретение относится к области исследования устройств на герметичность. Сущность: изделие помещают в вакуумную камеру с подключенным к ней течеискателем. Вакуумируют вакуумную камеру. Подают в вакуумную камеру эталонный поток пробного газа. Измеряют приращение парциального давления пробного газа в вакуумной камере от поданного в вакуумную камеру эталонного потока пробного газа. Измеряют парциальное давление пробного газа в вакуумной камере. В необходимое число этапов заправляют изделие смесью пробного газа с воздухом до заданного испытательного давления. После этапов заправки изделия делают выдержку на установление теплового равновесия изделия с окружающей средой. По достижении в изделии заданного испытательного давления повторно измеряют парциальное давление пробного газа в вакуумной камере. При этом на каждом из этапов заправки изделия в вакуумную камеру подают эталонный поток пробного газа. Измеряют приращение парциального давления пробного газа в вакуумной камере от поданного в вакуумную камеру эталонного потока пробного газа. Измеряют парциальное давление пробного газа в вакуумной камере перед началом и после окончания каждого этапа заправки. Вычисляют приращение негерметичности изделия на каждом этапе заправки на основании измеренных приращений парциального давления пробного газа в вакуумной камере на каждом этапе заправки и от поданного в вакуумную камеру эталонного потока пробного газа. Суммируют вычисленные приращения негерметичности изделия на каждом из этапов его заправки. При этом при достижении в изделии заданного испытательного давления на последнем этапе заправки не делают выдержку на установление теплового равновесия изделия с окружающей средой. Судят о степени негерметичности испытываемого изделия по значению суммы вычисленных приращений негерметичности изделия на каждом из этапов его заправки. Технический результат: повышение точности определения суммарной герметичности изделия. 1 табл.

Изобретение относится к космической технике, а именно к способам испытаний на герметичность гидравлических систем терморегулирования (СТР) космических аппаратов, снабженных гидропневматическими компенсаторами, при их наземной подготовке. Заявленный способ испытаний на герметичность гидравлической системы терморегулирования космического аппарата, снабженной гидропневматическим компенсатором с ограничительной решеткой жидкостной полости компенсатора состоит в том, что сначала вакуумируют жидкостную магистраль и жидкостную полость компенсатора гидравлической системы терморегулирования, а затем - газовую магистраль и газовую полость компенсатора, при этом герметичность газовой магистрали с газовой полостью компенсатора и жидкостной магистрали с жидкостной полостью компенсатора гидравлической системы терморегулирования определяют по величине газовых потоков, поступающих из газовой магистрали с газовой полостью компенсатора и жидкостной магистрали с жидкостной полостью компенсатора гидравлической системы терморегулирования при их вакуумировании, при этом перед вакуумированием жидкостной магистрали с жидкостной полостью компенсатора гидравлической системы терморегулирования и газовой магистрали с газовой полостью компенсатора выравнивают давления в жидкостной магистрали с жидкостной полостью компенсатора и в газовой магистрали с газовой полостью компенсатора с атмосферным давлением, вакуумирование осуществляют в два этапа, причем вначале вакуумируют форвакуумным насосом жидкостную магистраль с жидкостной полостью компенсатора и газовую магистраль с газовой полостью компенсатора до установившихся значений равновесного давления, достигаемых с помощью форвакуумного насоса, после чего продолжают их вакуумирование высоковакуумным насосом до установившихся значений равновесного давления, достигаемых с помощью высоковакуумного насоса, а герметичность жидкостной магистрали с жидкостной полостью компенсатора гидравлической системы терморегулирования и газовой магистрали с газовой полостью компенсатора определяют при их вакуумировании высоковакуумным насосом. Технический результат заключается в повышении качества испытаний за счет увеличения точности испытаний на герметичность изделий, за счет увеличения точности испытаний на герметичность изделий, повышения надежности и долговечности изделий при эксплуатации. 3 ил.

Изобретение относится к области исследования устройств на герметичность и может быть использовано для определения герметичности работающих под внешним давлением изделий, в частности изделий космической техники. Сущность: вакуумируют внутреннюю полость изделия через испытательную систему до установившегося равновесного давления в изделии и испытательной системе. Отсоединяют изделие от испытательной системы, продолжая вакуумировать испытательную систему. Измеряют первое установившееся равновесное давление в испытательной системе, соответствующее поступлению в испытательную систему собственного потока газоотделения и натекания испытательной системы. Подсоединяют к испытательной системе калиброванную течь. Измеряют установившееся равновесное давление в испытательной системе, соответствующее поступлению в испытательную систему собственного потока газоотделения и натекания испытательной системы и потока газа от калиброванной течи. Отсоединяют от испытательной системы калиброванную течь. Соединяют изделие с испытательной системой. Измеряют установившееся равновесное давление, соответствующее поступлению в испытательную систему потока от негерметичности изделия и собственного потока газоотделения и натекания испытательной системы. Отсоединяют изделие от испытательной системы. Измеряют второе установившееся равновесное давление, соответствующее поступлению в испытательную систему собственного потока газоотделения и натекания испытательной системы. Определяют величину негерметичности изделия на основании величины потока газа от калиброванной течи и величин упомянутых давлений. При этом после вакуумирования внутренней полости изделия через испытательную систему до установившегося равновесного давления в изделии и испытательной системе и отсоединения изделия от испытательной системы отсоединяют от средств вакуумирования сообщающийся с калиброванной течью участок испытательной системы известного объема. Причем калиброванную течь подсоединяют к участку испытательной системы известного объема. Измеряют поток газа от калиброванной течи по создаваемой им скорости нарастания давления в участке испытательной системы известного объема. Отсоединяют калиброванную течь от участка испытательной системы известного объема. После этого подсоединяют к средствам вакуумирования участок испытательной системы известного объема и захолаживают охлаждаемую ловушку средств вакуумирования. При этом измерения всех установившихся равновесных давлений, подсоединение и отсоединение калиброванной течи и изделия осуществляют после захолаживания охлаждаемой ловушки средств вакуумирования. Причем температура охлаждаемой ловушки средств вакуумирования должна быть равной температуре на рабочем месте. Технический результат: повышение точности определения герметичности изделий, повышение долговечности изделий при эксплуатации. 1 ил.

Изобретение относится к области испытательной техники и предназначено для испытаний изделий космической техники на герметичность, кроме того, может найти применение в таких областях техники, как газовое и атомное машиностроение, авиационная промышленность

Изобретение относится к области испытательной техники и направлено на повышение точности контроля изделий, что обеспечивается за счет того, что помещают изделие в объем накопления, измеряют начальную концентрацию контрольного газа в объеме накопления с помощью индикатора контрольного газа, заполняют изделие контрольным газом до избыточного испытательного давления, выдерживают изделие под избыточным испытательным давлением контрольного газа в течение заданного времени, измеряют конечную концентрацию контрольного газа в объеме накопления с помощью индикатора контрольного газа и о степени негерметичности изделия судят по разности конечной и начальной концентраций контрольного газа в объеме накопления, при этом после помещения изделия в объем накопления, перед измерением начальной концентрации контрольного газа в объеме накопления вводят порцию контрольного газа в объем накопления, измеряют приращение концентрации контрольного газа в объеме накопления от введенной порции контрольного газа, делают выдержку для определения воздухообмена объема накопления с окружающей объем накопления атмосферой, по окончании выдержки повторно измеряют приращение концентрации контрольного газа в объеме накопления от введенной порции контрольного газа, определяют воздухообмен объема накопления с окружающей объем накопления атмосферой по значениям конечного и начального приращений концентрации контрольного газа в объеме накопления и длительности выдержки для определения воздухообмена объема накопления с окружающей объем накопления атмосферой по математической формуле, приведенной в формуле изобретения, а о степени негерметичности изделия судят по разности конечной и начальной концентраций контрольного газа в объеме накопления с учетом определенного значения воздухообмена объема накопления с окружающей объем накопления атмосферой, рассчитывая степень негерметичности изделия по другой математической формуле, приведенной в формуле изобретения

Изобретение относится к области испытательной техники и может найти применение в тех ее областях, где предъявляются повышенные требования к герметичности, долговечности и надежности изделий, например трубопроводов, замкнутых отсеков космических кораблей

Изобретение относится к области испытательной техники и может найти применение в областях техники, где предъявляются повышенные требования к герметичности, долговечности и надежности изделий, например, таких, как трубопроводы, замкнутые отсеки космических кораблей

Изобретение относится к области очистки или защиты окружающей среды внутри обитаемых орбитальных станций от разрушающего воздействия микроорганизмов

Изобретение относится к средствам испытаний изделий на локальную герметичность с использованием пробных газов и течеискателей и может найти применение в таких областях техники, как газовая, атомная, авиационная, машиностроение

Изобретение относится к средствам испытаний изделий на герметичность с использованием инертных газов и направлено на снижение трудозатрат на проведение испытаний за счет отказа от прерывания испытаний для восстановления характеристик вакуумного адсорбционного насоса

 


Наверх