Патенты автора Сорокин Александр Александрович (RU)

Изобретение относится к отоплению и вентиляции жилых и общественных помещений и предназначено для создания комфортных условий в помещениях. Оно может быть использовано при проектировании, строительстве и реконструкции жилых и общественных зданий. Требуемый технический результат, заключающийся в энергосберегающем способе естественной приточной вентиляции, при этом обеспечивающем нормируемый объем и подогрев поступающего в помещение наружного воздуха без применения дополнительных нагревательных устройств, исполнительных электромеханизмов и регулирующих манипуляций пользователя, достигается тем, что наружный воздух поступает через воздухозаборное отверстие приточного устройства, затем смешивается с теплым внутренним воздухом помещения посредством переточных отверстий и каналов и далее перетекает в пространство конвектора, где, смешиваясь с воздухом, поднимающимся от теплообменника конвектора, нагревается и поступает в помещение. 2 ил.

Изобретение относится к области производства строительных материалов, а именно к производству конструкционно-теплоизоляционных материалов. Способ изготовления конструкционно-теплоизоляционного материала с применением продуктов переработки твердых коммунальных отходов состоит в том, что силикат-глыбу измельчают до удельной поверхности 2500 см2/г, смешивают ее с модификатором – суперпластификатором С-3, упрочняющей добавкой в виде портландцемента, дополнительной упрочняющей добавкой – продуктами переработки твердых коммунальных отходов (ТКО) – гранулированным пластиком ТКО, полученными по технологии рециклинга на мусороперерабатывающих заводах, вспенивающим агентом в виде перекиси водорода и водой затворения, заливают смесь в форму и далее проводят тепловую обработку смеси токами СВЧ в течение 15 минут при температуре 300°С при следующем соотношении компонентов смеси, мас.%: указанная силикат-глыба 62,188–64, суперпластификатор С-3 0,01–0,012, портландцемент 10–12, гранулированный пластик ТКО 0,04–0,1, перекись водорода 0,5–0,7, вода затворения 25. Технический результат – увеличение экологической безопасности и сохранение природных ресурсов при производстве конструкционно-теплоизоляционного материала с сохранением его физико-механических свойств. 1 табл.

Изобретение относится к области теплоэнергетики и может быть использовано в качестве энергохолодильной системы для объектов, функционирующих без связи с атмосферой, например для специальных фортификационных сооружений. Энергохолодильная система снабжена линией подачи воды с циркуляционным насосом из хранилища чистой холодной технической воды, разделяющейся после циркуляционного насоса на два трубопровода, один из которых - трубопровод, идущий на охлаждение холодильной машины, другой - трубопровод, идущий в промежуточную емкость. Хранилища чистой холодной технической воды и нагретой технической воды выполнены в виде отдельных теплоизолированных железобетонных резервуаров. Выход из холодильной машины соединен с промежуточной емкостью. Система снабжена линией подачи технической воды из промежуточной емкости в двигатель автономной электростанции, контактным теплообменником для очистки отработанных газов двигателя автономной электростанции нагретой технической водой, линией подачи нагретой технической воды от двигателя автономной электростанции в контактный теплообменник, а также линией подачи очищенных отработанных газов из контактного теплообменника в линию подачи окислителя в двигатель автономной электростанции. Достигаемый технический результат - повышение качества очистки отработанных газов двигателя автономной электростанции для их повторного использования в качестве дополнительного компонента к окислителю. 1 ил.

Изобретение относится к области теплоэнергетики и может быть использовано в качестве энергохолодильной системы для объектов, функционирующих без связи с атмосферой, например для специальных фортификационных сооружений (СФС). Энергохолодильная система содержит автономную электростанцию, включающую в себя двигатель и электрогенератор, холодильную машину, емкость с горючим, емкость с окислителем, хранилище холодной технической воды, хранилище нагретой технической воды. Система снабжена смесевой емкостью для хранения утепленной воды, емкостью для хранения сухого нейтрализующего вещества, соединенной с емкостью-дозатором для приготовления водного нейтрализующего раствора, контактным теплообменником для очистки отработанных газов двигателя, линией слива химически грязного водного нейтрализующего раствора с циркуляционным насосом из контактного теплообменника в хранилище химически грязного водного нейтрализующего раствора, в качестве которого используется хранилище нагретой технической воды, а также линией подачи очищенных отработанных газов из контактного теплообменника в линию подачи окислителя в двигатель автономной электростанции. Достигаемый технический результат - снижение расхода технической воды для охлаждения двигателя автономной электростанции, а также увеличениие срока режима полной изоляции СФС. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области водоотведения. Устройство содержит кольца перекрытия, подвижную ферму илоскреба. Кольца перекрытия выполнены из сегментов, имеющих трапециевидную или прямоугольную форму. Сегменты колец перекрытия жестко закреплены между собой. Сегменты колец перекрытия выполнены из материалов, имеющих положительную плавучесть. Кольца перекрытия выполнены свободно плавающими на поверхности зеркала воды. Кольца перекрытия выполнены с возможностью концентричного вращения вокруг центральной оси отстойника. Кольца перекрытия выполнены с возможностью свободного вращения илоскреба, имеющего систему скребков и треугольную ферму. Сегменты колец перекрытия снабжены отбойной юбкой, агломерационными тонкослойными модулями, имеющими отрицательную плавучесть. Отбойная юбка расположена на внешнем и внутреннем периметре сегментов колец перекрытия. Количество колец перекрытия соответствует количеству зазоров между конструктивными элементами подвижной фермы илоскреба. Агломерационные тонкослойные модули присоединены к сегментам колец перекрытия жесткими подвесами. Обеспечивается повышение эффективности и надежности биологической очистки сточных вод. 4 ил.

Изобретение относится к области водоотведения, а именно к способам моделирования аппаратов (устройств) биологической очистки сточных вод на канализационных очистных сооружениях. Способ определения концентрации рециркулирующего ила в системе биологической очистки сточных вод включает декомпозицию вторичного отстойника/отстойников на совокупность концентрически расположенных n подэлементов, имеющих первый и второй выходные потоки, n≥1, и расположенных по ходу движения входного потока от центра во все стороны в радиальном направлении. Затем определяют массовый расход ила во входном потоке вторичного отстойника/отстойников, расходы первого и второго выходного потоков концентрических подэлементов вторичного отстойника/отстойников, скорости осаждения i-ой фракции ила, оседающей в i-ом подэлементе вторичного отстойника, массовый расход ила в первом и втором выходных потоках i-го подэлемента вторичного отстойника, массовый расход ила в первом и втором выходных потоках вторичного отстойника, и концентрации ила в первом и втором выходном потоке вторичного отстойника. Предложенный способ определения концентрации загрязнений в очищенных сточных водах и концентрации ила в рециркуляционном потоке системе биологической очистки сточных вод позволяет определять концентрации веществ в потоках с учетом происходящих процессов в аппаратах (устройствах), что обеспечивает повышение качества и надежности биологической очистки сточных вод. 4 ил.
Изобретение относится к области медицины, а именно к офтальмологии. Для лечения язвенных поражений роговицы и роговичного трансплантата у детей проводят сеанс УФ-кросслинкинга роговичного коллагена в зоне язвенного дефекта без деэпителизации на фоне инстилляций 0,1% раствора рибофлавина при плотности мощности 2 мВт/см2, экспозиции 3-5 минут. Далее роговицу покрывают амниотической мембраной, фиксируют ее по лимбу и надевают лечебную контактную линзу. Через каждые 5 дней проводят повторение сеанса до полной эпителизации. Способ сокращает сроки купирования воспалительного процесса, обеспечивает полную эпителизацию дефекта и профилактику грубого рубцевания с формированием васкуляризированного помутнения роговицы. 3 пр.

Устройство предназначено для гашения гидравлических ударов в трубопроводах различного назначения. Устройство содержит трубопровод, полый непроточный демпфирующий элемент, выполненный в виде регулирующей пружины и последовательно соединенных камеры, соединительного патрубка с установленным в нем упором и входного фланца. Гидравлический узел содержит цилиндрическую камеру с входным основанием и выходным основанием, промежуточный патрубок, присоединенный к выходному основанию, причем выходной фланец расположен соосно трубопроводу, отводной патрубок, расположенный под прямым углом к трубопроводу. При этом расстояние между выходным фланцем и трубопроводом меньше расстояния между выходным основанием и отводным патрубком. Предохранительная разрушающаяся мембрана состоит из разрушающейся части, зажатой между входным фланцем полого непроточного демпфирующего элемента и выходным фланцем гидравлического узла, и концентрически расположенной упорной части. При этом регулирующая пружина соединяет упор с упорной частью. Технический результат – повышение надежности гашения гидравлических ударов, возникающих при неправильном использовании оборудования, установленного на трубопроводах. 3 ил.

Изобретение относится к области санитарной техники и может быть использовано при отведении и очистке сточных вод в общесплавных системах водоотведения. Система оснащена блоком транспортировки сточных вод, содержащим, по меньшей мере, коллектор, по меньшей мере, одну локальную сеть водоотведения, соединенную с коллектором, переливной трубопровод, соединенный с локальной сетью водоотведения, и устройство аварийного перелива, установленное на переливном трубопроводе. Устройство аварийного перелива выполнено в виде запорно-регулирующего устройства с приводом. Система дополнительно снабжена, по меньшей мере, одним датчиком дождя, подключенным к устройству передачи данных о дождях при помощи канала связи, по меньшей мере, одним датчиком уровня воды в локальной сети водоотведения, установленного в точке/точках выхода воды на поверхность и подключенного к устройству передачи данных об уровнях при помощи канала связи, блоком управления, подключенным к устройству передачи данных об уровнях с помощью канала связи, к приводу запорно-регулирующего устройства с помощью канала связи, к устройству передачи данных о дождях с помощью канала связи. Обеспечивается расширение области применения и повышение надежности системы. 2 ил.

Изобретение относится к области водоснабжения. Устройство содержит водосборник, холодильную машину, воздуховод, вентилятор, по крайней мере один гидронасос. Холодильная машина содержит компрессор, конденсатор, трубопроводы хладагента, испаритель, выполненный в виде по крайней мере одного теплоотводящего элемента. Воздуховод выполнен в виде вертикального и горизонтального участков, соединенных между собой отводом. Устройство дополнительно снабжено воздухозаборником, воздушным фильтром, источником высокого напряжения с отрицательной и положительной клеммами, электропроводом, озонатором, состоящим из по крайней мере двух параллельных цилиндров с осевыми изолированными проволочными электродами, по крайней мере одной секцией теплообмена, состоящей из входного теплообменного элемента, соединенного с гидронасосом с помощью входного трубопровода, выходного теплообменного элемента, соединенного с гидронасосом с помощью выходного трубопровода, циркуляционного трубопровода, соединяющего входной и выходной теплообменные элементы. Воздухозаборник установлен вертикально, выполнен расширяющимся вниз и в верхней части соединен с вертикальным участком воздуховода. Воздушный фильтр и озонатор установлены последовательно относительно движения воздуха внутри вертикального участка воздуховода. Осевые изолированные проволочные электроды озонатора подсоединены к отрицательной клемме источника высокого напряжения посредством электропровода. Входные и выходные теплообменные элементы установлены внутри горизонтального участка воздуховода. Теплоотводящие элементы и вентилятор установлены последовательно относительно движения воздуха внутри горизонтального участка воздуховода между входными и выходными теплообменными элементами. Конденсатор установлен внутри горизонтального участка воздуховода после теплообменных элементов. Водосборник соединен с горизонтальным участком воздуховода между отводом и вентилятором. Обеспечивается расширение области применения. 1 ил.

Система относится к области водоотведения и/или водоснабжения для оптимизации инвестиционных потоков при модернизации (реконструкции) систем водоотведения и/или водоснабжения. Технический результат заключается в обеспечении оптимального выбора последовательности вовлечения элементов системы водоотвода и или водоснабжения с учетом фактических и эталонных значений показателей, получаемых в результате эксплуатации. Система включает модуль анализа диагностируемых параметров с возможностью ввода фактических значений, модуль определения эксплуатационных затрат и модуль определения оптимальной выборки. 4 ил.

Изобретение относится к области теплоэнергетики и предназначено для выработки тепловой энергии на котельных с использованием сжиженного природного газа (СПГ) в качестве экологически чистого топлива. Достигаемый технический результат - повышение эффективности газификации сжиженного природного газа и подогрева испарившегося сжиженного природного газа, снижение массогабаритных характеристик теплообменных аппаратов, а также повышение безопасности и надежности эксплуатации котельной со сжиженным природным газом в качестве топлива. Из хранилища СПГ 4 сжиженный природный газ поступает в теплообменник-испаритель СПГ 6, расположенный внутри теплоизолированной емкостью 10 с промежуточным теплоносителем, в качестве которого используется вода. Сжиженный природный газ в теплообменнике-испарителе СПГ 6 нагревается и испаряется за счет теплообмена с теплым промежуточным теплоносителем (водой), циркулирующим по системе промежуточного теплоносителя 8. Для циркуляции воды в системе 8 охлажденная вода из теплоизолированной емкости 10 забирается циркуляционным насосом 9 и подается в теплообменник-нагреватель промежуточного теплоносителя 11, который расположен в коробе отвода дымовых газов 3. В теплообменнике-нагревателе промежуточного теплоносителя 11 вода нагревается за счет теплообмена с дымовыми газами, уходящими из котельной установки 1 через дымовую трубу 2. Затем горячая вода по системе 8 поступает в теплообменник-подогреватель испарившегося сжиженного природного газа 7, после которого теплая вода подается в теплоизолированную емкость 10 с промежуточным теплоносителем. Данный круговорот воды по системе промежуточного теплоносителя 8 обеспечивает стабильную и безопасную передачу тепла дымовых газов котельной установки 1 сжиженному природному газу. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области вычислительной техники. Технический результат заключается в расширении арсенала технических средств. Система содержит два объекта управления, модуль анализа диагностируемых параметров, содержащий блок анализа диагностируемых параметров, блок ввода эталонных диагностируемых параметров, причем в качестве объектов управления принимают системы водоотведения, блок анализа диагностируемых параметров выполнен с возможностью ввода фактических значений целевых показателей надежности, качества, энергетической эффективности объектов управления, блок ввода эталонных диагностируемых параметров выполнен с возможностью ввода плановых значений целевых показателей надежности, качества, энергетической эффективности объектов управления, а система дополнительно снабжена модулем ввода характеристик объекта управления, модулем определения эксплуатационных затрат объектов управления, содержащим блок определения эксплуатационных затрат объектов управления при фактических значениях целевых показателей надежности, качества. 5 ил.

Изобретение относится к измерительной технике, в частности к системам мониторинга притока воды. Система оперативного диагностирования притока воды включает модуль перекачки воды, приёмный резервуар с подводящим трубопроводом, модуль контрольно-измерительных приборов, модуль анализа диагностируемых параметров, который дополнительно снабжён блоками ввода геометрических характеристик приёмного резервуара, ввода геометрических характеристик подводящего трубопровода, анализа откачки воды из приёмного резервуара, а модуль контрольно-измерительных приборов дополнительно снабжён датчиками уровня воды, установленными на подводящем трубопроводе и датчиком уровня воды, установленным в приёмном резервуаре, модуль перекачки воды дополнительно снабжён запорно-регулирующим устройством с исполнительным органом, установленным на подводящем трубопроводе между датчиком уровня воды, установленным на подводящем трубопроводе, и приёмным резервуаром. При этом выходы всех устройств помощи каналов связи подключены к входу блока анализа водопритока. Техническим результатом является расширение области применения. 2 ил.

Изобретение относится к области водоснабжения. Способ состоит в измерении напора во всех контрольных точках сети, вычислении разности между полученными значениями напоров и заданными, определении диктующей точки с минимальным алгебраическим значением разности, выравнивании действительного значения напора в диктующей точке с заданным значением напора. На первом этапе проводят гидравлическое моделирование системы водоснабжения и определяют места расположения контрольных точек на сети, накапливают статистическую информацию о расположении диктующей точки в зависимости от времени суток и определяют алгоритм определения диктующей точки k в зависимости от времени суток, k ∈ 1, 2, …, n, где n - общее количество контрольных точек. Обеспечивается снижение эксплуатационных затрат и расширение области применения. 3 ил.

Изобретение относится к области водоснабжения. Устройство содержит водосборник, гидронасос, теплообменник-конденсатор, воздуховод, вентилятор, программируемое устройство управления, холодильную машину. Холодильная машина выполнена в виде компрессора, соединенного с конденсатором конденсаторным трубопроводом, с испарителем испарительным трубопроводом, и соединительного трубопровода, соединяющего конденсатор и испаритель. Устройство дополнительно снабжено электрическим двигателем вентилятора, статическим преобразователем частоты электрического двигателя вентилятора, дополнительным вентилятором, электрическим двигателем дополнительного вентилятора, статическим преобразователем частоты электрического двигателя дополнительного вентилятора, трубопроводом воды, соединяющим теплообменник-конденсатор и водосборник, датчиком температуры атмосферного воздуха, датчиком влагосодержания атмосферного воздуха, двенадцатью каналами связи, первой камерой обработки воздуха, статическим преобразователем частоты электрического двигателя гидронасоса. Устройство также дополнительно снабжено второй камерой обработки воздуха, первой камерой перекачки сорбента, статическим преобразователем частоты электрического двигателя первого дополнительного гидронасоса, второй камерой перекачки сорбента, статическим преобразователем частоты электрического двигателя второго дополнительного гидронасоса, пятью дополнительными воздуховодами. Электрический двигатель вентилятора запитан от статического преобразователя частоты электрического двигателя вентилятора. Вентилятор, воздуховод и первая камера обработки воздуха соединены последовательно. Первый датчик насыщения сорбента влагой, испаритель холодильной машины, гидронасос расположены в первой камере обработки воздуха ниже уровня сорбента. Электрический двигатель гидронасоса запитан от статического преобразователя частоты электрического двигателя гидронасоса. Гидронасос соединен с трубопроводом орошения воздуха. Электрический двигатель дополнительного вентилятора запитан от статического преобразователя частоты электрического двигателя дополнительного вентилятора. Электрический двигатель первого дополнительного гидронасоса запитан от статического преобразователя частоты электрического двигателя первого дополнительного гидронасоса. Электрический двигатель второго дополнительного гидронасоса запитан от статического преобразователя частоты электрического двигателя второго дополнительного гидронасоса. Второй датчик насыщения сорбента влагой, конденсатор холодильной машины, нагревательный элемент расположены во второй камере обработки воздуха ниже уровня сорбента. Первая камера перекачки сорбента соединена с первой камерой обработки воздуха. Вторая камера перекачки сорбента соединена со второй камерой обработки воздуха. Первая камера перекачки сорбента соединена со второй камерой обработки воздуха. Вторая камера перекачки сорбента соединена с первой камерой обработки воздуха. Программируемое устройство управления соединено с датчиком температуры атмосферного воздуха, с датчиком влагосодержания атмосферного воздуха, со статическим преобразователем электрического двигателя гидронасоса, со статическим преобразователем электрического двигателя вентилятора, с первым датчиком насыщения сорбента влагой, с электроприводом первой автоматической задвижки, со статическим преобразователем электрического двигателя первого дополнительного гидронасоса, со статическим преобразователем электрического двигателя дополнительного вентилятора, с электроприводом второй автоматической задвижки, со статическим преобразователем электрического двигателя второго дополнительного гидронасоса, с нагревательным элементом, со вторым датчиком насыщения сорбента влагой. Обеспечивается расширение области применения. 1 ил.

Изобретение относится к области водоотведения. Канализационная насосная станция содержит приемный резервуар, трубопровод подачи стоков, по меньшей мере, два насоса, соединенные с напорными трубопроводами с обратными клапанами. Устройство дополнительно снабжено всасывающими трубопроводами насосов, соединяющие приемный резервуар с насосами, по меньшей мере, двумя напорными водоводами, по меньшей мере, двумя вертикальными колоннами, по меньшей мере, двумя противонаправленными обратными клапанами, соединительной гребенкой, соединенной, по меньшей мере, с двумя напорными водоводами, по меньшей мере, с двумя противонаправленными обратными клапанами, по меньшей мере, с двумя напорными трубопроводами так, что точки соединения напорных трубопроводов и противонаправленных обратных клапанов совпадают. Вертикальные колонны соединены с противонаправленными обратными клапанами, обратные клапаны расположены между насосами и соединительной гребенкой, а противонаправленные обратные клапаны установлены так, что при движении жидкости вверх они закрываются, а при движении вниз – открываются. Вертикальные колоны в верхних точках вертикальных колонн соединены с атмосферой на уровне Н≥Нн вд+П, где Нн вд - разница высотных отметок верхней точки напорных водоводов и верхней точки соединительной гребенки, П - потери напора в напорном водоводе от места его соединения с соединительной гребенкой до отметки верхней точки напорных водоводов. Обеспечивается повышение показателей надежности устройства. 2 ил.

Изобретение относится к области водоснабжения, в частности к системе обработки воды. Изобретение может быть использовано для насыщения воды питьевого или иного назначения минералами в зависимости от состава исходной воды и потребности. Устройство для минерализации воды содержит последовательно соединенные узел ввода воды; узел минерализации, выполненный в виде полого цилиндра, на основаниях которого установлены водопроницаемые пористые перегородки, и содержащего между указанными перегородками по ходу течения жидкости к ступеней минерализации, разделенных n водопроницаемыми пористыми перегородками, где n=к+1, содержащих различные загрузки; узел вывода воды, устройство дополнительно снабжено: последовательно соединенными подводящим трубопроводом, расходным резервуаром, с установленным в нем датчиком температуры воды, насосом с электрическим двигателем, входным и выходным патрубками насоса, расходомером, статическим преобразователем частоты, выполненным с возможностью подачи электрического питания на электрический двигатель и изменения скорости его вращения, программируемым контроллером с каналами связи, при этом выходной патрубок насоса соединен с узлом ввода воды, расходомер установлен на выходном патрубке насоса, программируемый контроллер соединен с датчиком температуры воды, статическим преобразователем частоты, расходомером посредством каналов связи. Техническим результатом изобретения является повышение эффективности устройства для минерализации воды. 3 ил., 1 табл.

Изобретение относится к области гидротехники, в частности к системе исследования гидравлических ударов в напорных трубопроводах, транспортирующих жидкости. Изобретение может быть использовано для исследования гидравлического удара в трубопроводах, возникающих при пуске и остановке насосов в различных режимах, закрытии клапанов и задвижек, аварийном отключении насосов, изменении режимов работы насосных агрегатов и ошибок обслуживающего персонала на предприятиях энергетики, нефтехимической промышленности, коммунального водо- и теплоснабжения. 2 ил.

Изобретение относится к области гидротехники, в частности к системе трубопроводов, транспортирующих жидкости. Изобретение может быть использовано для гашения гидравлического удара в трубопроводах, возникающих при закрытии клапанов и задвижек, аварийном отключении насосов, изменении режимов работы насосных агрегатов и ошибок обслуживающего персонала на предприятиях энергетики, нефтехимической промышленности, коммунального водо- и теплоснабжения. Устройство предназначено для гашения гидроударов в системах напорных трубопроводов, транспортирующих жидкости. Устройство содержит участок центрального трубопровода, соединенного с входным патрубком, входящим вовнутрь цилиндрической камеры, расположенного так, что конец входного патрубка на некотором расстоянии от стенки камеры, к которой присоединен выходной фланец, и жидкость изливается в цилиндрическую камеру. В нижней части цилиндрической камеры располагается отводной патрубок, соединенный с продолжением трубопровода, куда уходит жидкость. Выходной фланец соединяется с входным фланцем посредством болтового соединения. Между фланцами зажата предохранительная разрушающаяся мембрана, рассчитанная на воздействие определенного давления, при превышении которого она ломается, открывая жидкости доступ в камеру. Входной фланец соединен с патрубком, который в свою очередь соединен с камерой. Технический результат заключается в повышении надежности работы устройства, упрощении ремонта и снижении стоимости его эксплуатации. 1 ил.

Изобретение относится к проходческим комбайнам, может быть использовано в угольной промышленности

Изобретение относится к области фотометрического анализа вещества и высокоэффективной жидкостной хроматографии и может быть использовано при спектрофотометрии в составе ультрафиолетового или спектрофотометрического детектора

Изобретение относится к области мобильной связи, а именно к способу организации связи с удаленными объектами, на которых находится большое число абонентов, при помощи подвижных базовых станций, в частности для акваторий

 


Наверх