Патенты автора Новиков Игорь Алексеевич (RU)

Изобретение относится к измерительной технике и может быть использовано для определения параметров ударно-волнового и теплового полей, возникающих в окружающей среде в результате взрыва заряда взрывчатого вещества. В устройство регистрации параметров быстропротекающих процессов, содержащее информационный датчик и блок измерения, выход информационного датчика соединен с первым входом блока измерения, второй выход блока измерения является выходом устройства, в устройство дополнительно введены блок обмена данными, блок обработки и документирования, блок питания, причем первый выход блока измерения соединен с входом блока обмена данными, выход блока обмена данными соединен с входом блока измерения, выход блока обмена данными соединен с входом блока обработки и документирования, выход блока обработки и документирования соединен с входом блока обмена данными, выход блока питания соединен с вторым входом блока измерения. Техническим результатом изобретения является повышение информативности, точности и удобства эксплуатации устройства, а также автоматизация процессов измерений, обработки и документирования результатов быстропротекающих процессов. 6 з.п. ф-лы, 5 ил.

Изобретение относится к измерительной технике и может быть использовано для определения давления и скорости ударной волны. Регистратор давления и скорости ударной волны содержит информационный датчик, n программируемых усилителей заряда и блок измерения, который состоит из аналого-цифрового преобразователя и блока памяти, микроЭВМ, задатчика эталонных напряжений, блока параметров окружающей среды и текущего времени, блока контроля, супервизора, радиотрансивера, при этом информационный датчик состоит из n датчиков избыточного давления, аналого-цифровой преобразователь является n-канальным, группа выходов n датчиков избыточного давления через n программируемые усилители заряда соединены с первой группой n входов аналого-цифрового преобразователя, цифровой выход которого соединен с первым входом микроЭВМ, первый выход которой соединен с входом блока памяти, а второй выход - с входом радиотрансивера, первый выход блока контроля соединен со вторыми входами n программируемых усилителей заряда, а второй выход - с входом задатчика эталонных напряжений, выход которого соединен со вторым входом аналого-цифрового преобразователя, выход супервизора соединен со вторым входом микроЭВМ, выход блока памяти соединен с третьим входом микроЭВМ, выход блока параметров окружающей среды и текущего времени соединен с четвертым входом микроЭВМ, вход com-порта связан с выходом микроЭВМ, а его выход является вторым выходом блока измерений, выход радиотрансивера является первым выходом блока измерений, дополнительно введены приемопередатчик, персональная ЭВМ, n датчиков давления (n≥4) информационного датчика размещены перпендикулярно направлению движения фронта ударной волны на равных расстояниях R друг от друга, вход приемопередатчика соединен с первым выходом блока измерений, выход приемопередатчика соединен с входом персональной ЭВМ. Техническим результатом при реализации заявленного изобретения является расширение функциональности измерителя давления за счет дополнительного определения скорости ударной волны и зависимости изменения скорости ударной волны от расстояния до источника ее возникновения. 1 ил.

Изобретение относится к измерительной технике и может быть использовано для определения температуры нестационарного газового потока, теплового импульса потока, скорости движения фронта теплового возмущения, зависимости скорости движения фронта теплового возмущения от расстояния до источника его возникновения. Заявлен регистратор температуры и скорости нестационарного газового потока, который содержит информационный датчик и блок измерения, который состоит из аналого-цифрового преобразователя, блока памяти, генератора тактовой частоты, N-аппаратно-программных каналообразующих модулей, микроЭВМ, аппаратно-программного модуля контроля внутренних питающих напряжений, блока измерения параметров окружающей среды, супервизора, радиотрансивера, com-порта, источника эталонных напряжений. При этом информационный датчик состоит из N-датчиков температуры, аналого-цифровой преобразователь является синхронным N-канальным, блок памяти энергонезависимым и перезаписываемым. Дополнительно введены приемопередатчик, персональная ЭВМ, при этом N датчиков температуры (N≥4) информационного датчика размещены перпендикулярно направлению движения фронта теплового возмущения на равных расстояниях R друг от друга, вход приемопередатчика соединен с первым выходом блока измерений, выход приемопередатчика соединен с входом персональной ЭВМ. 1 ил.

Изобретение относится к области испытательной и измерительной техники, а именно к способам определения теплового действия объекта испытаний (ОИ). Способ определения теплового действия объекта испытания характеризуется тем, что на пункте управления испытаниями (ПУИ) устанавливают информационный датчик, имеющий геодезическую привязку к системе пространственных координат испытательной площадки (ИП), устанавливают на ОИ маяк, включают маяк ОИ и измерители температуры, имеющие приемо-передающую антенну, соединенные каждый с матрицей n датчиков температуры, расположенных в каждой ИТ, принимают информационным датчиком сигналы от маяка ОИ и измерителей температуры, обрабатывают поступившие сигналы, определяют пространственные координаты ОИ и измерителей температуры на ИП, сохраняют координаты ОИ и измерителей температуры в памяти ЭВМ, убирают маяк с ОИ, производят подрыв ОИ, измеряют максимальную температуру, изменение температуры во времени и тепловой импульс в каждой измерительной точке, профиль теплового поля в измерительной точке, обрабатывают результаты измерений и записывают параметры теплового поля в каждой измерительной точке в блок памяти ЭВМ, формируют в автоматизированном режиме документ испытания. В результате повышается информативность испытаний, достигается автоматизация процессов доставки, обработки и хранения результатов испытаний. 2 з.п. ф-лы, 2 ил.

Группа изобретений относится к области испытания боеприпасов. Способ заключается в том, что при проведении испытаний определяют в автоматизированном режиме законы распределения поражающих элементов поля поражения боеприпаса по форме, массе, направлениям и скорости разлета, общее число поражающих элементов, величины показателей поражающего действия поля поражения дистанционного боеприпаса. Получают (уточняют) зависимости, связывающие показатели, характеризующие поражающее действие поля поражения дистанционного боеприпаса с величинами его физических факторов и техническими характеристиками поражаемого объекта при минимально необходимом количестве испытаний. Строят координатный закон поражения исследуемого объекта. Определяют величину интегральной характеристики эффективности поражающего действия боеприпаса дистанционного действия для исследуемого объекта. Сравнивают по величине интегральной характеристики дистанционные боеприпасы между собой. Устройство содержит устройство метания, трубку холодной пристрелки, исследуемый объект, первый и второй блоки неконтактных датчиков, блок передающих устройств, блок определения показателей поражающего действия боеприпаса и определения величины интегральной характеристики эффективности боеприпаса, устройство инициирования и взрывную камеру. Достигается повышение оперативности и точности получения исходных данных, а также снижение трудоемкости и стоимости проведения испытаний. 2 н. и 3 з.п. ф-лы, 6 ил.

Изобретение относится к области испытательной и измерительной техники, а именно к способам определения фугасного действия объекта испытаний. Способ заключается в том, что на пункте управления испытаниями устанавливают информационный датчик, имеющий геодезическую привязку к системе пространственных координат испытательной площадки. Затем устанавливают на объект испытаний маяк, включают маяк объекта испытаний и измерители давления, имеющие приемо-передающую антенну, соединенные каждый с матрицей n датчиков воздушной ударной волны, расположенных в каждой измерительной точке. Принимают информационным датчиком сигналы от маяка объекта испытаний и измерителей давления. После чего обрабатывают поступившие сигналы, определяют пространственные координаты объекта испытаний и измерителей давления на испытательной площадке, сохраняют координаты объекта испытаний и измерителей давления в памяти ЭВМ. Убирают маяк с объекта испытаний, производят подрыв объекта испытаний, измеряют параметры и среднюю скорость воздушной ударной волны в каждой измерительной точке. По запросу информационного датчика передают показания, зафиксированные в измерителях давления на пункте управления испытаниями. Обрабатывают результаты измерений и записывают параметры воздушной ударной волны в каждой измерительной точке в блок памяти ЭВМ. Затем формируют в автоматизированном режиме документ испытания. Достигается повышение информативности испытаний. 1 н.п., 2 з.п. ф-лы, 2 ил.

Изобретение относится к области испытания боеприпасов и может быть использовано при оценке пробивного действия полей поражения дистанционных боеприпасов

Изобретение относится к области испытания боеприпасов и может быть использовано при определении инициирующей способности боевых частей дистанционных боеприпасов

Изобретение относится к области испытаний боеприпасов и может быть использовано для определения характеристик явления аэроудара, возникающего в отсеках конструкции объектов техники в результате действия полей поражения боеприпасов

Изобретение относится к полигонным испытаниям боеприпасов и может быть использовано, в частности, для измерения характеристик осколочного поля снаряда

Изобретение относится к области испытаний боеприпасов и может быть использовано для определения характеристик осколочного действия боеприпасов

Изобретение относится к области испытания боеприпасов и может быть использовано при оценке пробивного действия снарядов

Изобретение относится к области машиностроения и может быть использовано для оперативной оценки эффективности поражающего действия боеприпасов

Изобретение относится к области испытания боеприпасов и может быть использовано при определении инициирующей способности различных поражающих элементов, а также при определении стойкости боеприпасов к воздействию этих элементов

Изобретение относится к области испытания боеприпасов и может быть использовано при определении инициирующей способности снарядов, содержащих заряд взрывчатого вещества (ВВ), при их поверхностном подрыве

Изобретение относится к области обеззараживания воды или иной жидкости

Изобретение относится к медицине, а именно к способам диагностики и непрерывного мониторинга состояния уровня глюкозы в крови человека

 


Наверх