Патенты автора Харламов Павел Викторович (RU)

Изобретение относится к способам модифицирования систем лубрикации. Способ термометаллоплакирования поверхности гребня колеса локомотива, реализуемый системой подачи устройства гребнерельсосмазывателя к поверхности гребня колеса характеризуется тем, что для термометаллоплакирования рабочих поверхностей бандажей колес локомотива наносится слой металла - Al, Zn, Cu, Fe, Pb или его сплава с фрикционными свойствами, имеющим твердость ниже твердости металла рабочих поверхностей колес локомотива, посредством технологического оборудования в виде бункера с термометаллоплакирующими брикетами состоящими из металлов Al, Zn, Cu, Fe, Pb, Li или из их сплавов, имеющих твердость ниже твердости металла рабочих поверхностей бандажей колес локомотива. Упомянутые брикеты могут содержать сердцевину из термопласта-адгезива с функциональными присадками например, графит, графен в отношении: мягкий металл - 5-100%; экологически чистый термопласт-адгезив - 0-95%; экологически чистые функциональные присадки: 0-60%. Консервативный привод представляет собой спиральную пружину из n-пластин переменной жесткости, при этом концы пластин на внутреннем витке связаны между собой, а на внешнем витке пластины не связаны между собой и имеют ограниченную свободу перемещения в плоскости закрепления пружин относительно бункера и одна из пластин на внешнем витке связана с корпусом бункера. В результате повышается тяговое усилие локомотива в процессе его движения. 3 ил.

Изобретение относится к способам динамического мониторинга узлов трения мобильных технических систем. Сущность: анализируют нормальную и тангенциальную составляющие сил фрикционного взаимодействия, их взаимный трибоспектр и автотрибоспектр нормальной составляющей, а также их отношения в форме комплексного коэффициента передачи или амплитудофазочастотной характеристики. Диагностика текущего состояния фрикционного контакта и прогнозирование его изменения выполняется на основании базы интегральных оценок как на всем частотном диапазоне регистрации амплитудофазочастотных характеристик трибосистемы, так и на заданных октавных диапазонах частот. Изменение указанных оценок на заданную величину пик-фактора определяет чувствительность систем автоматического управления (САУ) трибосистемой или систем автоматического регулирования (САР) параметрами трибосистемы и служит идентификационным признаком перехода из одного стационарного состояния в другое. Диагностика текущего состояния фрикционного контакта, идентификация процессов трения и изнашивания, краткосрочное или долгосрочное прогнозирование его изменения выполняются на основании сравнительного анализа собственных трибоспектральных характеристик фрикционного взаимодействия поверхностей трения, полученных на базе методов физико-математического моделирования процессов трения и трибоспектральных характеристик фрикционного взаимодействия поверхностей трения натурных узлов. На первом этапе динамического мониторинга натурных мобильных технических систем (МТС) формируется база трибоспектральных характеристик для идентификации процессов трения и изнашивания протекающих во фрикционных контактах МТС и фиксации в трехкоорндинатном пространстве периодических сигналов фрикционного взаимодействия контактирующих микро- и макрошероховатостей поверхностей трения, разложение периодических сигналов (собственных трибоспектров) в ряды Фурье на фиксированной сетке частот. На втором этапе фиксируются в трехкоординатном пространстве периодические сигналы фрикционного взаимодействия контактирующих микро- и макрошероховатостей поверхностей трения МТС. На третьем этапе проводится оценка корреляции сигналов в виде рядов Фурье, полученных в лабораторных условиях и эксплуатации МТС. Обеспечивается адекватность физико-математической модели МТС и натурной МТС путем выполнения физико-математического моделирования в m-масштабах линейных размеров с последующим определением относительных, абсолютных погрешностей, коэффициентов конкордации и корреляции фиксируемых выходных параметров в m физико-математических моделях МТС. Технический результат: повышение адекватности модели и снижение числа модельных экспериментов. 1 ил.

Настоящее изобретение относится к способам динамического мониторинга мобильных нелинейных технических систем (МНТС). Способ заключается в контроле процессов трения и изнашивания путем анализа нормальной и тангенциальной составляющих сил фрикционного взаимодействия, их взаимного спектра и автотрибоспектра нормальной составляющей, а также их отношения в форме комплексного коэффициента передачи или амплитудофазочастотной характеристики. Отличительной особенностью способа является то, что основе критериев качества традиционной теории автоматического регулирования для каждого момента времени вычисляются предельно допустимые уровни физических величин параметров, а на их основе реализуются: а) наблюдение за изменением тренда критерия диссипативных потерь энергии IQ во времени в октавных (долеоктавных) диапазонах частот, что позволяет установить их корреляционную связь с заданным уровнем вероятности и характером изменения трибологических параметров (например, изменения градиента коэффициента трения) и на этой основе идентифицировать наиболее коррелируемые диапазоны частот, на которых проявляются трибологические свойства фрикционного контакта, а также изменение трибологических параметров и внешних факторов (например, изменений вязкости смазочного материала, понижения температуры окружающего воздуха, появления износа или атермических / термических мостиков схватывания); б) наблюдение за изменением тренда безразмерной интегральной величины коэффициента демпфирования Iξ в октавных (долеоктавных) диапазонах частот и выделение наиболее коррелируемых k-информативных диапазонов частот трибоспектральных характеристик с k-трибологическими параметрами и внешними факторами фрикционного взаимодействия (например, изменением вязкости смазочного материала, понижением температуры окружающего воздуха, появлением износа, фреттинг-коррозии или атермических / термических мостиков схватывания), что позволяет с заданной вероятностью (0,95) идентифицировать моменты времени ухудшения упруго-диссипативных характеристик фрикционно-механической системы и на этой основе прогнозировать последующее поведение системы и остаточный ресурс работы модельного или натурного узла трения n-массной ФММ; в) наблюдение за изменением тренда критерия энергетических потерь IE позволяет идентифицировать стабильность фрикционных связей в реальном времени функционирования узла трения; г) мониторинг фрикционно-механической системы во времени по обобщенному, критерию динамики Iд фрикционно-механической системы, и его пороговым значением «предупреждения» - величины «1» и «опасности» - «1,15». Технический результат - повышение точности результатов модельных и натурных испытаний и определения выходных параметров натурной МНТС и ее физической модели. 3 табл., 13 ил.

Изобретение относится к испытательной технике. Сущность: процессы, протекающие на фрикционном контакте (ФК) «объекта» и «модели», описываются аналогичными математическими моделями, уравнениями регрессии, получаемыми при натурном эксперименте, с применением математического планирования полного или дробного факторного эксперимента. Измерение трибопараметров ВМНТС осуществляется во время проведения испытаний. Коэффициент трения представляется в виде комплексной функции, т.е. в виде отношения взаимного трибоспектра в тангенциальном и нормальном направлениях к автотрибоспектру в нормальном направлении, действительная часть которого характеризует упругие, а мнимая - диссипативные свойства подсистемы фрикционного контакта. Выполняется контроль и фиксирование удельной площади касания в реальном масштабе времени методом проводимости в паре металл-металл или методом лазерного просвечивания в паре металл-полимер. Обеспечивается равенство констант подобия в квазилинейной (механической) и существенно нелинейной (фрикционной) подсистемах высокомобильных нелинейных механических систем (ВМНТС), в том числе константы подобия давления амплитуды колебания деформаций консервативных связей СΔА=1 и жесткости консервативных связей . Массы, совершающие плоскоколебательные движения в поле сил тяготения в натурной ВМНТС, приводятся к вращающемуся центру приведения физико-математической модели ВМНТС. Упрощение эквивалентной динамической модели ВМНТС выполняется при соблюдении равенства суммарных кинематических и потенциальных энергий натурной ВМНТС и ее физико-математической модели, с использованием метода Рэлея, учитывающего величины жесткости связей, соединяющих сосредоточенные и распределенные массы. Технический результат: обеспечение достаточного и необходимого соответствия основных динамических характеристик квазилинейных (механических) подсистем натурной ВМНТС и ее физической модели. 11 ил., 1 табл.
Настоящее изобретение относится к системам модифицирования стальных поверхностей трения с нанесением на поверхности трения фрикционных и антифрикционных полимерных присадок. Способ термоплакирования и формирование функциональной пленки из материалов смазочного стержня и его оболочки на поверхности гребня колеса осуществляется при трении оболочки смазочного стержня, выполненного из металла, твердость которого ниже твердости металла колеса (Al, Cu, Fe, Pb), при этом терморегулирование в зоне контакта термоплакирования поверхности гребня колеса и технологического оборудования (подающего канала) осуществляется путем самообогрева зоны термоплакирования за счет энергии фрикционного взаимодействия металлической оболочки стержня и передачи части ее через металлическую оболочку к технологическому оборудованию (подающему каналу). В результате повышается надёжность работы механических систем.

Изобретение относится к области машиностроения, а более конкретно к способам управления фрикционными системами. Предложен способ управления фрикционными системами путем подачи в зону трения третьего тела. В качестве третьего тела используют материал, обладающий анизотропными свойствами. При этом обеспечивается высокий не менее 0,3 при продольном крипе и низкий не более 0,14 при поперечном крипе коэффициент сцепления. Третье тело может быть в виде металла (Al, Zn, Cu) или его окислов (Аl2О3, ZnO, CuO). В зоне трения происходят процессы создания динамического воздействия на фрикционную систему в виде внешних, собственных колебаний или фрикционных автоколебаний контактирующих микро- и макрошероховатостей. Кроме того, могут происходить процессы подавления собственных колебаний контактирующих микро- и макрошероховатостей, а также изменяется суммарная контактная жесткость при изменении направления относительного скольжения поверхностей трения. Достигается подавление шума. 11 ил.

Изобретение относится к способам испытаний узлов трения механических систем. Сущность: оценка состояния трибосистемы осуществляется по анализу интегральных оценок (функция диссипации, степени диссипации, приведенных к выходу энергетических потерь фрикционной системы, квадрата модуля когерентности), запаса устойчивости по амплитуде и фазе амплитудо-фазочастотных характеристик. На физико-механических моделях натурных систем производится набор базы данных триботехнических, трибоспектральных и выходных характеристик, при этом изменение этих оценок на заданную величину пик-фактора определяет чувствительность систем автоматического управления трибосистемой или систем автоматического регулирования параметрами трибосистемы и служит идентификационным признаком перехода из одного стационарного состояния в другое. Технический результат: возможность краткосрочного либо долгосрочного прогнозирования динамического состояния механической системы и, в частности, фрикционного контакта с возможностью управления его динамическими характеристиками. 13 ил., 4 табл.

Изобретение относится к способам испытаний узлов трения механических систем

 


Наверх