Патенты автора Плеханов Александр Иванович (RU)

Изобретение относится к области технической физики, к устройствам, предназначенным для детектирования молекул газов или жидкостей на основе многолучевой интерференции света, явления полного внутреннего отражения и капиллярной конденсации в порах пленки опалоподобного кремнезема. Способ основан на использовании максимально большого коэффициента отражения лучей, распространяющихся в хемосенсорной пленке за счет полного внутреннего отражения на одной поверхности пленки и дополнительного высокоотражающего покрытия подложки, а также многолучевой интерференции света. Устройство содержит источник света, интерференционную хемосенсорную пленку, нанесенную на зеркальную поверхность стеклянной призмы, систему доставки аналита, систему регистрации, измеряющую изменение углового спектра отражения при наличии тестируемого аналита. Технический результат – увеличение чувствительности и селективности молекул газов или жидкостей в анализируемом аналите, повышение быстродействия, а также в упрощении конструкции. 2 н. и 10 з.п. ф-лы, 3 ил.

Изобретение относится к медицине, а именно к медицинской диагностике наличия ацетона в выдыхаемом воздухе пациента. Способ измерения концентрации ацетона в выдыхаемом воздухе основан на измерении уровня содержания ацетона по эмиссионным линиям разряда при пониженном давлении пробы выдыхаемого воздуха пациента с нормировкой на концентрацию паров воды, определенную по параметрам тлеющего разряда. Устройство для реализации способа состоит из разрядной трубки с разрядом в прокачиваемом через трубку выдыхаемого воздуха пациента в сочетании со спектрометром видимого диапазона волн и с возможностью расшифровки и интерпретации эмиссионных спектров. Использование изобретения обеспечивает возможность неинвазивного контроля содержания глюкозы в крови больного диабетом посредством измерения концентрации паров ацетона в выдыхаемом воздухе пациента в режиме реального времени. Изобретение позволяет повысить точность и чувствительность измерения концентрации примесей ацетона в выдыхаемом воздухе пациента, а также упростить конструкцию и расширить ассортимент устройств данного назначения. 2 н.п. ф-лы, 5 ил.

Изобретение относится к области технической физики и может быть использовано для точного позиционирования сфокусированного излучения на поверхности оптического волокна. В представленном техническом решении для точного перемещения сфокусированного луча электромагнитного излучения в устройстве применяется сдвиг, параллельный самому себе, луча лазера с помощью поворота хотя бы одной плоскопараллельной пластинки, выполненной прозрачной для электромагнитного излучения. Технический результат - увеличение точности, обеспечение надежности и повторяемости позиционирования электромагнитного излучения, улучшение возможности компенсации дрейфа смещения положения объекта, упрощение конструкции. 2 з.п. ф-лы, 2 ил.

Изобретение относится к области квантовой электроники, а более конкретно - к активным лазерным средам. Активная лазерная среда включает наночастицы металла и люминофор, при этом в качестве активных лазерных центров используют наночастицы металлов, окруженные оболочкой, представляющей собой кремнезем и содержащей люминофор, спектр люминесценции которого перекрывается с пиком поверхностного плазмонного резонанса металлических наночастиц. Технический результат заключается в обеспечении возможности снижения порога генерации лазерного излучения. 2 з.п. ф-лы, 3 ил.

Изобретение относится к области научного или аналитического приборостроения. Оно также может быть использовано при разработке и создании ряда приборов бытового или специального назначения. Этот способ увеличения концентрации примесей, выделяемых из газовой смеси, может иметь широкий спектр применения, а именно в тех случаях, когда требуется импульсное и динамичное во времени повышение концентрации выбранного вещества, достаточное для проведения измерений. Этот способ может быть применен для анализа воздуха, выдыхаемого больными, при диагностике скрытых заболеваний на начальной стадии. Кроме того, этот способ, объединенный с масс-спектрометром или с каким-либо другим аналитическим прибором, сенсором или детектором, может быть использован для создания селективных и чрезвычайно чувствительных анализаторов с целью определения ядовитых или взрывчатых веществ в воздухе, для детектирования наркотиков, определения присутствия в атмосфере паров ртути, следов метана, малых концентраций диоксина и пр. Способ содержит накопительную емкость с расположенными внутри конструктивными элементами. Через накопительную емкость прокачивается газ с примесью, которая адсорбируется на поверхности накопительной емкости и на поверхностях конструктивных элементов внутри нее. С целью повышения пиковой концентрации десорбированных примесей и снижения их потерь десорбция накопленных примесей производится в результате облучения внутренней поверхности накопительной емкости и поверхностей конструктивных элементов, расположенных внутри накопительной емкости и контактирующих с газовой смесью. Техническим результатом изобретения является резкое увеличение концентрации адсорбированного вещества посредством увеличения количества накопленного вещества на максимально большой поверхности с последующим десорбированием его в объем минимальных размеров. 2 ил.

Изобретение относится к области физической химии и может быть использовано в производстве фотонных кристаллов с заданными физическими свойствами

Изобретение относится к спектральным газоразрядным лампам для атомной абсорбции и предназначено для использования в спектрометрах абсорбционного типа

Изобретение относится к лазерной оптике и может быть использовано как оптический элемент лазерного резонатора (градиентное зеркало или «мягкая» диафрагма) при работе с твердотельными и газовыми лазерами для формирования заданного закона распределения оптического излучения, а также в астрономии и спектроскопии для коррекции формы оптической передаточной функции

 


Наверх