Патенты автора Тарасов Борис Петрович (RU)

Изобретение относится к технологиям создания источников тока, а именно к катодным материалам для щелочных источников тока многократного действия и способу их получения. Техническим результатом является высокая электропроводность и циклическая стабильность. Композитный материал содержит гидроксид никеля, углеродные наноструктуры: углеродные нанотрубки, углеродные нановолокна, графеноподобный материал, и политетрафторэтилен, используемый в качестве связующего. Способ получения катодного композитного материала включает синтез гидроксида никеля осаждением из водного раствора нитрата никеля гидроксидом аммония, при этом синтез гидроксида проводится непосредственно на поверхности углеродных наноструктур. 2 н.п. ф-лы.
Изобретения относятся к области катализа. Описан никельсодержащий углерод-графеновый катализатор гидрирования при получении водород-аккумулирующих материалов на основе магния, содержащий наночастицы никеля размером 2-5 нм в количестве 6-17 мас. %, которые закреплены на торцах углеродных нановолокон и равномерно распределены на поверхности графенового материала. Описан способ получения указанного выше катализатора, включающий добавку водного раствора соли никеля Ni(СН3СОО)2 к водной суспензии оксида графита, лиофильную сушку водной суспензии оксид графита-Ni(СН3СОО)2, восстановление оксида графита и никеля(II), причем восстановление оксида графита и никеля(II) проводят газовой смесью Ar:Н2:С2Н4, содержащей этилен, при этом одновременно проводят синтез углеродных нановолокон в потоке этой смеси Ar:H2:C2H4 при температуре 700°С. Технический результат - получен эффективный катализатор гидрирования. 2 н.п. ф-лы, 4 пр.

Изобретение относится к области водородной энергетики, а точнее к технологии компактного, безопасного и обратимого хранения (аккумулирования) водорода в связанном состоянии в виде атомов. Аккумулирование водорода осуществляется с помощью металлических материалов (металлы, сплавы или интерметаллические соединения), обратимо взаимодействующих с водородом. На основе таких материалов можно создать устройство для аккумулирования водорода (металлогидридный аккумулятор водорода), которое при внешнем давлении водорода выше давления образования гидридов или при внешней температуре ниже температуры дегидрирования поглощает водород (аккумулятор выполняет цикл поглощения водорода), а при давлении водорода ниже давления разложения гидридов или температуре выше температуры дегидрирования выделяет водород (аккумулятор выполняет цикл выделения водорода). Способ заключается в том, что состав металлогидридной засыпки аккумуляторов водорода представляет собой сформированную определенным образом однородную смесь различных металлогидридных материалов, а внешние рабочие параметры (температура и давление) определенным образом изменяются на протяжении цикла поглощения или цикла выделения водорода. Дополнительно в состав металлогидридной засыпки аккумуляторов водорода вводятся не реагирующие с водородом и с металлогидридной засыпкой легкие высокодисперсные теплопроводящие элементы, которые позволяют уменьшить спекаемость порошков металлогидридной засыпки в ходе циклов поглощения-выделения водорода. Техническим результатом является повышение эффективности, увеличение срока действия металлогидридных аккумуляторов водорода. 5 з.п. ф-лы, 4 пр.

Изобретение относится к водородной энергетике, а именно к технологии и оборудованию получения водорода и наполнения им сосудов до требуемого давления для использования в качестве автономных мобильных установок для генерации водорода под высоким давлением с последующей его заправкой в баллоны, предназначенные для питания топливных элементов, обеспечивающих работу беспилотных летательных аппаратов, телекоммуникационного оборудования, компьютерной техники и других автономных объектов электропотребления. Способ получения компримированного водорода включает проведение химической реакции водородгенерирующего материала с жидким реагентом в реакторе 1 с выделением водорода и заполнением им заправляемого баллона 12, при этом в качестве водородгенерирующего материала используют магний, магниевые сплавы или гидрид магния, в качестве жидкого реагента - водный раствор кислоты, выбранный из группы: лимонная, уксусная, соляная, серная, жидкий реагент предварительно помещают в отдельный резервуар 6, соединенный с реактором 1 трубкой 3 с краном 4, отделяющим резервуар 6 от реактора 1, вытесняют воздух из свободного объема резервуара 6, системы контроля и очистки водорода, связанной с резервуаром 6, и заправляемого баллона 12 или реактора 1, открывают кран 4, отделяющий указанный резервуар 6 с жидким реагентом от реактора 1, а полученный водород по газоотводной трубке 16 направляют в резервуар 6 с жидким реагентом, далее в систему контроля и очистки, после чего собирают в один или несколько последовательно заправляемых до требуемого давления баллонов 12. Способ осуществляют в устройстве, включающем реактор 1, заправляемый баллон 12, отдельный резервуар 6 для жидкого реагента; штуцер-дозатор 2, снабженный трубкой 14 для подачи жидкого реагента непосредственно к водородгенерирующему материалу и газоотводной трубкой 16, при этом через штуцер-дозатор 2 проходит трубка 3 для соединения реактора 1 и резервуара 6 с краном 4 для их отделения; штуцер 7 для соединения резервуара 6 и газоотводной трубки 16 с системой контроля и очистки выделяющегося водорода, содержащей датчик давления 10, предохранительный клапан 9, фильтрующие элементы 11; систему сброса избыточного давления, содержащую трубку 18, предохранительный клапан 19 и кран 20, при этом трубка 14 для подачи жидкого реагента снабжена фильтром и установлена таким образом, что ее выходное отверстие расположено в зоне водородгенерирующего материала, газоотводная трубка 16 снабжена фильтром, краном 17 и расположена между штуцером-дозатором 2 и штуцером 7 для соединения резервуара 6 и газоотводной трубки 16 с системой очистки выделяющегося водорода 10, 9, 11. Предлагаемый способ получения компримированного водорода, заключающийся в проведении химической реакции водородгенерирующего материала с жидким реагентом в замкнутом объеме, осуществляемый в заявляемом устройстве, обладающем мобильностью и простой разборной конструкцией и функционирующем без использования дополнительных источников энергии, позволяет получать водород в полевых условиях и наполнять им один или несколько последовательно заправляемых баллонов до требуемого давления. 2 н. и 2 з.п. ф-лы, 1 ил., 2 пр.

Изобретение относится к области теплоэнергетики и водородной энергетики, а точнее к устройствам нагрева или охлаждения на основе обратимых термохимических циклов, использующих энергию источников низкопотенциального тепла. В состав засыпки теплообменников вводятся частицы порошка металлогидридного материала, равномерно перемешанные с множеством не реагирующих с водородом и не реагирующих с металлогидридным материалом теплопроводящих порошковых объектов, представляющих собой частицы материала, который имеет плотность меньше, чем плотность меди, а коэффициент температуропроводности больше, чем коэффициент температуропроводности меди. Дисперсность не реагирующих с водородом и не реагирующих с металлогидридным материалом теплопроводящих порошковых объектов либо равна, либо превышает дисперсность частиц металлогидридного материала. Каждая частица порошка металлогидридного материала имеет по меньшей мере один участок поверхности, контактирующий с газообразным водородом, и по меньшей мере один участок поверхности, контактирующий с теплопроводящим порошковым объектом. Техническим результатом является увеличение удельной мощности металлогидридных теплообменников и снижение веса устройства, а также уменьшение спекаемости порошков металлогидридной засыпки в ходе циклов поглощения-выделения водорода. 3 з.п. ф-лы, 1 табл.
Изобретение относится к водородным технологиям и водородной энергетике. Водород-аккумулирующие материалы содержат следующие компоненты, мас.%: 97-75 MgH2 и 3-25 никель-графенового катализатора гидрирования, представляющего собой 10 или 25 мас.% наночастиц Ni размером 1-10 нм, равномерно закрепленных на графеновой поверхности. Указанные материалы получают механохимической обработкой металлического магния с никель-графеновым катализатором гидрирования при комнатной температуре и давлении водорода 10-30 атм. Полученные водород-аккумулирующие материалы обладают большим содержанием обратимого водорода и высокой циклической стабильностью при уменьшении содержания и размеров наночастиц никеля. 2 н.п. ф-лы, 5 пр.

Изобретение относится к никель-графеновому катализатору гидрирования, содержащему 10-25 мас. % нанокластеров никеля размером 2-5 нм, нанесенных на углеродные наночастицы. Причем в качестве носителя он содержит восстановленный оксид графита, представляющий собой чешуйки восстановленного оксида графита. Также изобретение относится к способу получения никель-графенового катализатора гидрирования, включающему диспергирование водного раствора соли никеля Ni(СН3СОО)2 в водной суспензии оксида графита. При этом водную дисперсию оксид графита - Ni(СН3СОО)2 сушат лиофильно с последующим одновременным восстановлением оксида графита и никеля(II) водородом при 300-500°С. Технический результат – высокая эффективность катализатора с улучшением его функциональных характеристик (равномерно распределены нанометровые частицы никеля на поверхности носителя). 2 н.п. ф-лы, 2 ил., 4 пр.

Изобретение относится к области электротехники, а именно к электрохимическому генератору, и может быть использовано в качестве источника электропитания для портативной техники и в качестве зарядного устройства аккумуляторов для портативной техники. Повышение выходных электрических характеристик источника электропитания и создание простого и эффективного автономного источника электропитания на топливных элементах является техническим результатом изобретения. Портативный водородный источник электропитания содержит корпус с батареей топливных элементов с заменяемым источником газообразного водорода, в качестве которого используют, например, металлогидридный водород, и имеет модульную структуру, с возможностью замены отдельных модулей, для изменения габаритно-весовых характеристик и энергоемкости устройства. Водородная газовая линия в источнике электропитания выполнена с быстроразъемным магнитным или резьбовым соединением и с клапаном продувки анодной области, а также содержит управляющую и регулирующую режим работы топливного элемента электронику. 14 з.п. ф-лы, 1 ил.

Изобретение относится к каталитическим химическим процессам, а именно к реакциям гидрирования непредельных углеводородов и ароматических нитросоединений. Задачей изобретения является создание палладийсодержащего катализатора гидрирования, в котором частицы палладия имеют нанометровый размер и равномерно распределены на поверхности носителя. Поставленная задача решается использованием в качестве носителя функционализированного этилендиамином оксида графита. Описанный способ приготовления палладийсодержащего катализатора гидрирования путем нанесения соли двухвалентного палладия (PdCl2) на углеродный наноматериал с последующим восстановлением до нольвалентного палладия боргидридом натрия в атмосфере водорода отличается тем, что в качестве углеродного наноматериала используют модифицированный этилендиамином оксид графита, получаемый кипячением суспензии оксида графита в бутаноле-1 в присутствии избытка этилендиамина. Содержание палладия в катализаторе составляет 4.8-5 вес.%. Катализатор является стабильным при стандартных условиях и не теряет активности при длительном хранении на воздухе, а также сохраняет активность при проведении многократных циклов гидрирования без его регенерации. 2 н.п. ф-лы, 3 пр.

 


Наверх