Патенты автора Мильман Игорь Игориевич (RU)

Изобретение относится к дозиметрии ионизирующих излучений. Способ получения тонкослойных детекторов ионизирующих излучений для кожной и глазной дозиметрии содержит этапы, на которых осуществляют нагрев поверхности исходного кристалла корунда сканирующим СО2-лазерным пучком диаметром 10-15 мкм, при этом в качестве исходного материала детектора используют корунд стехиометрического состава, поверхность которого предварительно покрывают графитовым слоем толщиной 5-10 мкм, после чего нагревают поверхность кристалла, покрытую графитовым слоем, до температуры 2450-2470°С сканирующим лазерным пучком мощностью 8,8-9,2 Вт и скоростью сканирования 0,9-1,1 м/с. Технический результат – повышение надежности, точности и достоверности получаемой дозиметрической информации. 2 табл., 5 ил.

Изобретение относится к области пассивной твердотельной дозиметрии смешанных гамма-нейтронных полей. Способ регистрации доз в смешанных гамма-нейтронных полях излучений содержит этапы, на которых сначала детектор облучают эталонными полями гамма-излучения, после чего помещают его в приемную катушку спектрометра ядерного магнитного резонанса (ЯМР), производят измерение в режиме накопления от 1 до 50 спектров в течение 1-5 минут, усредняют эти спектры по усредненным для каждого детектора спектрам, строят градуировочную дозовую зависимость фактора формы спектра от поглощенной дозы гамма-излучения, после чего в приемную катушку спектрометра помещают детектор, облученный смешанным гамма-нейтронным полем, измерения повторяют с этим детектором, определяют фактор формы и наносят его значения на градуировочную дозовую зависимость, по отношению факторов форм, полученных при гамма-нейтронном облучении и известной дозой гамма-облучения, вычисляют их отношение, по полученному коэффициенту определяют суммарную дозу и вклад в нее нейтронной составляющей. Технический результат – повышение надежности, точности и достоверности получаемой дозиметрической информации. 1 з.п. ф-лы, 1 табл., 2 ил.

Изобретение относится к дозиметрии ионизирующих излучений. Предлагается способ получения тонкослойных детекторов ионизирующих излучений для кожной и глазной дозиметрии, использующий стандартный детектор Аl2О3:С на базе анион-дефектного корунда, при этом детектор нагревают до температуры 1120-1220К, выдерживают при этой температуре 10-40 минут с одновременным облучением его в нагретом состоянии интегральным потоком света от ртутного газоразрядного источника с последующим нагревом в темноте поверхностного слоя детектора толщиной 10-13 мкм до температуры 1280-1370К, с использованием, например, сфокусированного излучения СО2-лазера мощностью 12 Вт путем сканирования лучом диаметром 10-15 мкм поверхности детектора со скоростью 0,1 м/с. Технический результат – повышение надежности, точности и достоверности оценки доз облучения хрусталика глаза, кожных покровов открытых участков тела. 7 ил., 1 табл.

Изобретение относится к области лазерной техники. Способ создания лазерно-активных центров окраски в α-Al2O3 заключается в том, что простые центры окраски - кислородные вакансии, захватившие один или два электрона (F- и F+-центры), созданные при выращивании или в результате термохимической обработки исходных кристаллов, преобразуются в сложные, оптически активные в инфракрасной области спектра, F2+ и F22+-центры. Преобразование осуществляется посредством термообработки при фиксированной температуре в интервале 800-900°С в течение 1-10 мин с одновременным облучением кристалла полным спектром ртутного источника света с плотностью мощности в интервале 10-2-1,0 Вт/см2. Технический результат заключается в исключении применения радиационных технологий при создании лазерно-активных центров в кристаллах α-Al2O3. 1 табл., 11 ил.
Изобретение относится к электронной и ускорительной технике для повышения электрической и механической прочности вакуумно-плотных окон ввода и/или вывода энергии СВЧ-излучения в волноводные ускоряющие структуры и может быть использовано при создании/эксплуатации мощных современных ускорителей электронов. Одновременное повышение электрической и механической прочности диэлектрических окон ввода/вывода СВЧ-излучения достигается нанесением на одну или обе поверхности окна защитного покрытия в виде слоя клея на основе поливинилацетата толщиной 1,5-2 мм, обладающего малыми значениями коэффициентов вторичной и фотоэлектронной эмиссии, высокой адгезионной способностью к диэлектрическим материалам и высокими вакуум-прочностными свойствами. Механическая прочность вакуумно-плотных окон ввода/вывода СВЧ-излучения обеспечивается и при ее потере в результате тепловых, электрических и СВЧ-пробоев или суммарного их воздействия. Технический результат - повышение электрической и механической прочности вакуумно-плотных окон ввода/вывода СВЧ-излучения в ускоряющие структуры электронных ускорителей и увеличение тем самым надежности их работы, продление сроков безаварийной эксплуатации, а также восстановление работоспособности вышедших из строя СВЧ-окон, экономии материальных и временных ресурсов при простоте реализации предлагаемого способа. 2 н.п. ф-лы.

Изобретение относится к области гелиоэнергетики и касается конструкции фотоэлектрического модуля космического базирования. Фотоэлектрический модуль включает в себя нижнее защитное покрытие, на котором с помощью полимерной пленки закреплены кремниевые солнечные элементы с антиотражающим покрытием, и расположенное над лицевой поверхностью солнечных элементов верхнее защитное покрытие, которое скреплено с солнечными элементами промежуточной пленкой из оптически прозрачного полимерного материала. Со стороны лицевой поверхности солнечных элементов и в антиотражающее просветляющее покрытие солнечных элементов введен оптически активный прозрачный полимер, содержащий антистоксовый люминофор. Верхнее и нижнее защитные покрытия выполнены из оптически активных кислородосодержащих материалов типа монокристаллического α-Al2O3-x, способных к люминесценции, накоплению и высвечиванию светосумм при естественной оптической и термической стимуляции. Технический результат заключается в повышении эффективности при работе в цикле солнечный свет - темнота. 1 з.п. ф-лы. 9 ил. 1 табл.

Изобретение относится к способу измерения накопленных высоких и сверхвысоких доз и мощностей доз ионизирующих излучений термолюминесцентными (ТЛ) детекторами на основе оксида алюминия. Способ измерения высоких и сверхвысоких доз, накопленных в термолюминесцентных детекторах ионизирующих излучений на основе оксида алюминия, в том числе при облучении в условиях повышенных температур окружающей среды, включает нагрев облученного детектора и регистрацию интенсивности термостимулированной люминесценции, при этом интенсивность термостимулированной люминесценции измеряют в температурном интервале 430-630°C, а спектральную область регистрируемой интенсивности термолюминесценции ограничивают диапазоном 250-350 нм, при этом величину поглощенной дозы детектором, облученном при температуре окружающей среды до 430°C, рассчитывают интегральным методом, а при облучении детектора в температурном интервале 430-530°C - пиковым методом. Технический результат - повышение точности, надежности и достоверности измерений. 7 ил.

Изобретение относится к способу обработки рабочих веществ твердотельных детекторов ионизирующих излучений, основанных на явлениях термостимулированной люминесценции (ТЛ) и оптически стимулированной люминесценции (ОСЛ). Способ термолучевой обработки вещества твердотельного детектора ионизирующих излучений на основе оксида алюминия включает этапы, на которых осуществляют нагрев материала и облучение его в нагретом состоянии фотонным излучением мощностью 1-10 мВт в диапазоне длин волн 200-220 нм в течение заданного времени, при этом облучение материала в нагретом состоянии фотонным излучением с указанными параметрами проводят в два этапа, сначала при температуре 550-590°C в течение 1-3 минуты, после чего повторяют ее при температуре 370-400°C в течение 4-6 минут. Технический результат - повышение точности, надежности и достоверности регистрации дозиметрических измерений. 1 табл., 8 ил.

Изобретение относится к области дозиметрии нейтронного излучения и может быть пригодно для стационарного контроля плотности потока и флюенсов нейтронов в активной зоне ядерных реакторов, для периодического контроля доз нейтронного облучения реакторных конструкционных материалов, для решения задач радиационного материаловедения, для использования в качестве детекторов сопровождения изделий и предметов медицинского назначения при их стерилизации в ядерном реакторе, а также для высокотемпературных измерений флюенсов нейтронов в сверхглубоких скважинах

Изобретение относится к способу измерения накопленной дозы или мощности дозы ионизирующего излучения твердотельными детекторами, облученными при высокой температуре окружающей среды

 


Наверх