Патенты автора Воробьев Алексей Александрович (RU)

Изобретение относится к устройству для лазерной резки материалов с рекуперацией отводимой тепловой энергии и может быть использовано в автомобильной и авиационной промышленности. Устройство содержит лазерный излучатель с источником электропитания, систему формирования лазерного луча с оптическими элементами, систему хранения и подачи технологического газа, связанную с соплом для подачи газа, систему охлаждения лазерного излучателя и систему передачи тепловой энергии от системы охлаждения лазерного излучателя. Упомянутая система передачи тепловой энергии от системы охлаждения лазерного излучателя соединена с системой хранения и подачи технологического газа. Технический результат изобретения заключается в возможности наиболее полно использовать электрическую энергию, питающую лазерный технологический комплекс, что в свою очередь позволяет расширить типы обрабатываемых материалов. 4 ил.

Энергоэффективное устройство лазерной резки материалов может быть использовано для оперативного и высокоточного изготовления сложноконтурных деталей из листовой заготовки. Сущность изобретения заключается в том, что устройство содержит источник питания, лазерный излучатель, оптические элементы, сопло, систему охлаждения лазерного излучателя, систему подачи технологического газа и систему передачи тепловой энергии от системы охлаждения лазерного излучателя к обрабатываемой заготовке. Часть тепловой энергии посредством системы передачи тепловой энергии поступает от системы охлаждения лазерного излучателя к обрабатываемой заготовке. Происходит нагрев заготовки и для ее резки требуется меньше энергии лазерного излучения, либо происходит увеличение скорости границы разрушения без увеличения мощности лазерного излучения. Как показывают расчеты, нагрев заготовки на 10 градусов ведет к снижению необходимой мощности лазерного излучения на 1%. Устройство позволяет максимально использовать электрическую энергию, питающую лазерный технологический комплекс. 4 ил.

Изобретение относится к области построения и функционирования измерительных информационных систем обнаружения и засечки ядерных взрывов. Способ определения мощности ядерного взрыва содержит этапы, на которых одновременно измеряют сигнал в оптическом диапазоне длин волн и сигнал от ионизирующего излучения, при этом аппаратно или программно дифференцируют сигналы, полученные от каналов измерения оптического сигнала и сигнала ионизирующего излучения, а мощность взрыва определят по величине смещения точки пересечения графиков производных функций сигналов ионизирующего и оптического излучения. Технический результат – повышение точности и достоверности определения параметров ядерного взрыва, в том числе его мощности. 2 ил.

Изобретение относится к измерительной технике и может быть использовано для исследований параметров динамического деформирования металлических материалов в авиационной и космической технике. Сущность: регистрируют электромагнитное поле, возникающее при динамическом деформировании тел, например при высокоскоростном соударении тел. Полезный сигнал регистрируют исследуемым образцом, подключенным через коаксиальное электрическое соединение к устройству измерения: осциллографу, мультиметру, вольтметру и т.д. Функция, аппроксимирующая полученный сигнал, аппаратно или программно дифференцируется. Определяют скорость деформации, которая численно равна значению производной, взятой с обратным знаком, при стремлении аргумента к нулю. Определяют время окончания деформации, которое равно времени локального экстремума производной. В случае высокоскоростного соударения ударника и мишени время этого экстремума определяет время остановки ударника при проникании в мишень. Технический результат: повышение точности определения параметров деформирования, возможность определения скорости деформации и времени окончания деформации. 2 ил.

Изобретение относится к лазерной технике. Малогабаритный инфракрасный твердотельный лазер содержит лазер накачки и кристалл Fe2+:ZnSe - пассивный модулятор добротности, При этом на грани кристалла Fe2+:ZnSe, параллельные оптической оси лазера накачки, нанесены полупрозрачное и отражающее диэлектрические покрытия. Технический результат заключается в обеспечении возможности реализации малогабаритного лазерного излучателя ИК-диапазона со сниженным количеством оптических элементов. 1 ил.

Изобретение относится к лазерной технике. Инфракрасный твердотельный лазер содержит лазер накачки, кристалл Fe2+:ZnSe - пассивный модулятор добротности и дополнительный резонатор. Резонатор лазера накачки выполнен «глухим», а пассивный модулятор добротности имеет вид кристалла Fe2+:ZnSe, установленного между зеркалами дополнительного резонатора внутри лазера накачки. Технический результат заключается в обеспечении компактности устройства, за счет использования одного кристалла Fe2+:ZnSe одновременно в качестве пассивного модулятора добротности и активного элемента. 1 ил.

Использование: для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов. Сущность изобретения заключается в том, что способ лазерной обработки неметаллических материалов заключается в облучении их поверхности импульсом лазерного излучения, формируют лазерный импульс, плотность энергии которого на облучаемой поверхности пластины определяется по представленному соотношению. Технический результат: обеспечение возможности снижения энергетических затрат и уменьшения термоупругих напряжений. 2 ил.

Использование: для определения параметров высокоскоростного движения метательных тел, например измерения перегрузок, скорости соударения, и для исследования параметров динамического деформирования металлических материалов в авиационной и космической технике. Сущность изобретения заключается в том, что при регистрации электромагнитного поля, возникающего при динамическом деформировании тел, полезный сигнал регистрируют, используя исследуемый образец, подключенный через коаксиальное соединение к устройству измерения, при этом исследуемый образец является первичным физическим преобразователем ударного воздействия в полезный сигнал. Технический результат: обеспечение возможности прямого измерения без больших инструментальных и статистических погрешностей. 2 н.п. ф-лы, 4 ил.

Портативный автономный многоразовый импульсный твердотельный лазер выполнен в виде двух состыкованных сборок и внешнего резонатора. Одна из сборок - разрушаемая (сменная), включает в себя ударную трубку, заполненную ксеноном, заряд взрывчатого вещества, разрушаемый отражатель и светопроводящую пластину в корпусе. Другая сборка, прочная, состоит из прочного корпуса, световода и активного элемента, представляющего собой стержень с плоскопараллельными торцами, изготовленный из стекла, активированного неодимом Nd3+, расположенного перпендикулярно ударной трубке. Внутренняя поверхность прочного корпуса имеет зеркальное покрытие и в совокупности с разрушаемым отражателем образует осветитель. Ударная трубка внутри имеет зеркало, отражающее световое излучение с фронта ударной волны в сторону активного элемента. Корпус заряда имеет ослабленное сечение в месте планируемого разрушения. Технический результат - получение мощного импульсного лазерного излучения с малым углом расходимости пучка. 2 ил.

Изобретение относится к области технологических процессов и может быть использовано для скрайбирования полупроводниковых, керамических и стеклообразных материалов

Изобретение относится к импульсно-периодическим волоконным лазерным излучателям с пиротехнической накачкой и может быть использовано для исследования стойкости оптико-электронных средств к лазерному излучению

Изобретение относится к системам автоматического управления, а именно к следящим системам наведения объектов с ограниченным углом поворота, и может быть использовано в системах наведения мобильных робототехнических комплексов, самоходных артиллерийских установок, пусковых установок ракетных и ракетно-пушечных комплексов

 


Наверх