Патенты автора Шушлебин Александр Иванович (RU)

Способ измерения давления внутри ледяного покрова относится к ледоведению и ледотехнике и служит для определения осредненного по всей толщине льда давления в натурных условиях (in situ). Такие данные могут быть использованы при определении характеристик прочности льда, прогнозе его разрушения, для обеспечения безопасного пребывания людей и техники на льду и для прогноза воздействия льда на берег, дно и гидротехнические сооружения, а также при проектировании и строительстве гидротехнических сооружений на шельфе замерзающих морей и для обеспечения ледового плавания. В способе измерения давления внутри ледяного покрова задействованы два идентичных цилиндрических датчика, один из которых замораживается в лед, а другой располагается свободно в скважине, пробуренной вблизи с вмороженным датчиком. При этом для улучшения температурного контакта с вмещающим льдом промежуток между стенками скважины и датчиком заливается температуропроводящей жидкостью. Сигналы с вмороженного и свободного датчиков поступают на блок-преобразователь сигналов, где оцифровываются, сигнал со свободно установленного датчика инвертируется и суммируется с сигналом от вмороженного датчика. Просуммированный сигнал поступает на регистратор. Таким образом убирается собственная температурная деформация цилиндрического датчика, связанная с температурными изменениями во льду. Технический результат заключается в расширении функциональных возможностей мониторинга напряженно-деформированного состояния ледяного поля или припая и повышении точности измерений с целью прогнозирования разлома или торошения исследуемого ледяного поля в результате внешних воздействий. 1 ил.

Изобретение относится к области геофизики и может быть использовано для обеспечения безопасности нахождения на льду людей и материальных ценностей. Заявлен способ мониторинга состояния дрейфующего ледяного поля или припая и прогноза его разлома при сжатии льдов и воздействии волн зыби. Способ заключается в расстановке на ледяном поле или припае сейсмометров и наклономеров, которые фиксируют волновые поля и очаги их формирования в окружающем ледяном покрове, датчиков напряжений и деформометров для определения изменений напряженно-деформированного состояния ледяного поля, глобальной спутниковой системы позиционирования для временной синхронизации и фиксации изменений ориентации расстановки датчиков при дрейфе и поворотах ледяного поля. Согласно заявленному решению на ледяном поле расставляются по четырехугольной схеме четыре полевые модульные станции, каждая из которых включает трехкомпонентный сейсмометр, двухкомпонентный наклономер, два однокомпонентных деформометра, два датчика напряжения и приемник сигналов глобальной спутниковой системы позиционирования. При этом размеры сторон четырехугольника выбираются в зависимости от размеров ледяного поля и решаемых задач. Технический результат - повышение оперативности выделения предикторов разломов ледяного поля и заблаговременное прогнозирование опасного явления в определенном временном диапазоне. 1 ил.

Изобретение относится к области измерительной техники и может быть использовано для определения в натурных условиях деформационных и прочностных характеристик ровного ледяного покрова при изгибе. Заявленный способ предусматривает применение судна (ледокольного типа), которое оказывает кратковременное силовое воздействие форштевнем на ледяное поле вплоть до его разрушения или создание судном на чистой воде свободной волны, направленной на кромку ледяного поля. При этом на ледяной покров устанавливаются в линию по ходу движения судна на нескольких пикетах (точках) сейсмометр, деформометр, наклономер и вмораживается датчик напряжения, а в носовой части судна устанавливается акселерометр для определения момента разрушения льда. Таких пикетов на льду организуют от одного до трех и больше. Расстояние между пикетами выбирается в зависимости от толщины льда и характера воздействия на ледяное поле. В случае силового воздействия судна форштевнем на край льдины осуществляют один из двух режимов: медленное непрерывное движение судна по линии установки датчиков на пикетах или одиночные разрушения льда изгибом с остановками движения судна между воздействиями. При этом в носовой части судна устанавливается акселерометр, который фиксирует момент разрушения льда. В случае создания свободной волны необходимо, чтобы перед ледяным полем был участок чистой воды, на котором судно могло бы набрать скорость и затормозить перед кромкой поля, что приведет к распространению в ледяном поле изгибно-гравитационной волны. В результате определяются следующие параметры: момент разрушения льда при изгибе, критические наклоны ледяного поля, относительные деформации и напряжения в поверхностном слое льда. При образовании трещины во льду в непосредственной близости от любого пикета можно получить напряжения разрушения ледяной пластины. Технический результат – повышение точности получаемых данных. 2 ил.

Изобретение относится к области исследования физико-механических свойств льда, в частности льдотехнике, предназначено для измерения напряженно-деформированного состояния ледяного покрова, вызванного природными явлениями и техническими воздействиями

Изобретение относится к области геофизики и может быть использовано для определения времени и координат образования айсбергов выводных ледников

Изобретение относится к области исследования физико-механических свойств льда как материала в ледотехнике, в частности к механическим способам разрушения льда для нужд хозяйственной деятельности

Изобретение относится к измерительной технике, а более конкретно к определению параметров состояния ледяного покрова с помощью гидравлических или пневматических средств, в том числе к определению физико-механических характеристик льда и ледяных образований

Изобретение относится к измерительной технике, в частности к определению физико-механических характеристик (прочности) ледовых образований в натурных условиях в скважинах
Мы будем признательны, если вы окажете нашему проекту финансовую поддержку!

 


Наверх