Патенты автора Елинсон Вера Матвеевна (RU)

Изобретение относится к нанотехнологии, а именно к способу изготовления полимерного материала с биологической активностью, который характеризуется наноструктурированием поверхности травлением ионами газов с последующим нанесением пленочного наноразмерного покрытия, включающего фтор и углерод, с помощью ионно-стимулированного осаждения в вакууме. Способ изготовления нанокомпозитного материала с биологической активностью включает травление поверхности подложки посредством ионно-плазменной обработки в вакууме с использованием ионов тетрафторметана (CF4) и последующее ионно-стимулированное осаждение из плазмообразующей газовой среды в вакууме на наноструктурированную поверхность подложки модифицирующей углеродсодержащей пленки. При этом наноструктурирование поверхности подложки проводят в течение 15-35 мин, а модифицирующую пленку толщиной 20-200 нм формируют из октафторциклобутана (C4F8) в течение 3-15 мин, обеспечивая содержание в пленке фтора и углерода в атомном соотношении (38-47):(60-55) соответственно. Технический результат – повышение эффективности процессов травления поверхности подложки и последующего осаждения модифицирующей пленки с улучшенными антиадгезионными свойствами, а также уменьшение влагопроницаемости. 2 пр.
Изобретение относится к области нанотехнологий. Нанокомпозитный материал с биологической активностью включает подложку из политетрафторэтилена или полиэтилентерефталата, имеющую наноструктурированную поверхность в результате ее травления потоками ионов тетрафторметана. Рельеф поверхности подложки модифицирован углеродсодержащей пленкой, полученной ионно-стимулированным осаждением в вакууме из плазмообразующей газовой среды. Углеродсодержащая пленка получена из октафторциклобутана, содержит фтор и выполнена толщиной 20-200 нм. Атомное содержание фтора и углерода в пленке находится в соотношении 0,6-0,8. Обеспечивается исключение адгезии микроорганизмов к поверхности, супергидрофобность и оптическая прозрачность материала. 2 пр.
Изобретение относится к области нанотехнологии, а более конкретно, к нанокомпозитным материалам с пленочным углеродсодержащим покрытием, получаемым осаждением ионов из газовой фазы углеводородов посредством ионно-стимулированного осаждения.Нанокомпозитный материал с биологической активностью включает подложку из биосовместимого полимера, преимущественно политетрафторэтилена или полиэтилентерефталата, имеющую наноструктурированную поверхность в результате ее травления потоками ионов тетрафторметана до формирования среднеквадратичной шероховатости Rq величиной 5-200 нм, при этом рельеф поверхности подложки модифицирован углеродсодержащей наноразмерной пленкой, полученной ионно-стимулированным осаждением в вакууме из циклогексана.Новым является то, что модифицирующая углеродсодержащая пленка, которая получена при осаждении из плазмообразующей смеси тетрафторметана и циклогексана, дополнительно содержит фтор в массовом соотношении к углероду в диапазоне 0,5-1,3, а рельеф наноструктурированной поверхности подложки образован выступами, отстоящими между собой на расстоянии 0,3-1,0 мкм, высота которых, как минимум, вдвое превышает радиус их основания, причем модифицирующая пленка содержит фтор и углерод в следующем их массовом соотношении 32-55% и 65-42% соответственно.Предложенное техническое решение полностью исключило адгезию микроорганизмов на поверхности наноструктурированного материала, супергидрофобность которого достигнута за счет оптимизированного содержания фтора и углерода на заданном нанорельефе поверхности подложки, при этом полученная оптическая прозрачность материала в видимом спектральном диапазоне обеспечила пригодность для использования в политронике.
Изобретение относится к нанотехнологии, а более конкретно к способу изготовления полимерного материала с биологической активностью, который характеризуется наноструктурированием поверхности травлением ионами газов с последующим нанесением пленочного наноразмерного покрытия, включающего фтор и углерод, с помощью ионно-стимулированного осаждения в вакууме. Способ изготовления материала с биологической активностью включает подложку из биосовместимого полимера, преимущественно политетрафторэтилена или полиэтилентерефталата, содержит травление поверхности подложки посредством ионно-плазменной обработки в вакууме с использованием ионов тетрафторметана и последующее ионно-стимулированное осаждение модифицирующей углеродсодержащей пленки из циклогексана в вакууме на наноструктурированную поверхность подложки. Наноструктурирование поверхности подложки проводят в течение 10-40 минут, а модифицирующую углеродсодержащую пленку толщиной 0,3-1,0 мкм формируют из плазмообразующей смеси паров циклогексана и тетрафторметана в диапазоне их содержания (об. %): 62-32 / 35-65 соответственно. Предложенный способ обеспечил формирование двухслойной матричной системы, повышенные антимикробные свойства которой достигаются автоматически. 2 пр.
Изобретение относится к технологии обработки высокомолекулярных полимерных материалов органическими соединениями для нанесения покрытий на основе углеродных соединений. Описан способ получения антимикробных нанокомпозитных полимерных материалов формированием наноструктурированной поверхности полимерной подложки путем предварительной обработки ее поверхности ионами химически активных и/или инертных газов посредством изменения состава газов для ионной обработки поверхности или режимов этой операции, до получения рельефа с заданной среднеквадратичной шероховатостью (Rq), и последующим нанесением наноразмерной пленки на основе углерода ионно-стимулированным осаждением из газовой фазы паров углеродсодержащих соединений, включающих sp2- и sp3-гибридизованные состояния углерода, отличающийся тем, что обработку поверхности полимерной подложки ионами активных и/или инертных газов проводят в течение 3-10 минут при средней энергии ионов 300-2000 эВ и плотности тока 0,5-2 мА/см2, а наноразмерную углеродсодержащую пленку выполняют в виде многослойной структуры, периодически изменяя напряжение средней энергии ионов или чередованием газов, формирующих пары углеродсодержащих соединений при постоянной энергии ионов, регулируя тем самым содержание в молекулах нанослоев пленки количество sp3- и sp2-гибридизованных состояний углерода, при этом в нанослоях соотношение sp3-/sp2-гибридизованных состояний углерода поддерживают в интервале от 0,7 до 1,8. Технический результат - обеспечение антимикробного нанокомпозитного полимерного материала с повышенным оптическим пропусканием и гидрофобностью. 2 пр.

Изобретение относится к способу получения нанокомпозитных полимерных материалов с биологической активностью

Изобретение относится к области иммунологии и может найти применение в медицине и биотехнологии в качестве средства для стимулирования функциональной активности иммунокомпетентных клеток и коррекции иммунодефицитных состояний организма

 


Наверх