Патенты автора Подлипнов Владимир Владимирович (RU)

Изобретение относится к области формирования тонких пленок сложного состава в вакууме и может быть использовано в микроэлектронике. Испаритель твердых растворов, используемый для формирования тонких пленок в вакууме, содержит корпус в виде стакана и заслонку в виде крышки, внутренняя часть которой коаксиально размещена в полости корпуса и выполнена в виде конуса, и нагреватель, размещенный со стороны внешней поверхности корпуса. Упомянутая заслонка установлена в корпус испарителя с кольцевым зазором, образующим выходное отверстие для испаряемых атомов, с возможностью возвратно-поступательного движения относительно корпуса. Заслонка имеет кольцеобразный выступ, которым она упирается в корпус испарителя. Корпус испарителя дополнительно содержит продолжение конструкции корпуса, выполненное в виде кольца высотой, составляющей 1/3-2/3 высоты конусной части заслонки испарителя, и внутренним диаметром, равным внешнему диаметру корпуса испарителя. Толщина упомянутого кольца равна толщине стенок корпуса испарителя. Внутренняя поверхность кольца, взаимодействующая с торцевой поверхностью заслонки, имеет в сечении выступы трапециевидной формы с верхним основанием, равным 1-3 мм, и нижним основанием 4-7 мм. Упомянутые выступы расположены друг от друга на расстоянии 3-5 размеров верхних оснований трапециевидного выступа. Величина зазора между упомянутой торцевой поверхностью кольцеобразного выступа заслонки и поверхностью трапециевидных выступов упомянутого кольца корпуса равна 1,5-3 мм. Трапециевидные выступы имеют высоту, не превышающую толщину стенки корпуса испарителя. Обеспечивается формирование направленного потока атомов твердого раствора сложного состава, соответствующего стехиометрическому составу при одновременном увеличении однородности их распределения по поверхности положки. 2 ил.

Изобретение относится к испарителю многокомпонентных растворов. Испаритель содержит заслонку в виде конуса, корпус в виде стакана, нагреватель, размещенный со стороны внешней поверхности корпуса. Во внутренней части заслонки, входящей в полость корпуса, симметрично ее конусной части выполнена полость конусной формы высотой h1=(0,6-0,75)h, где h - высота конусной части заслонки, и основанием, удовлетворяющим условию неравенства D≤0,8d, где d - диаметр основания внешнего конуса заслонки; D - диаметр основания полости в конусной части заслонки. Полость заслонки выполнена с возможностью размещения в ней груза, удельный вес которого удовлетворяет условию неравенства Р≥(1,2-1,5)р, где р - удельный вес материала, из которого изготовлена заслонка, а Р - удельный вес материала груза, помещаемого в конусную полость заслонки. Изобретение позволяет увеличивать давление во внутренней полости корпуса испарителя и достигать лучшего соответствия стехиометрического состава испаряемого вещества и паров атомов при открывании заслонки. 2 ил.

Изобретение относится к области силовой электроники и может быть использовано при сплавлении элементов силовых полупроводниковых приборов. Кассета для сплавления элементов конструкции полупроводниковых диодов содержит основание, выполненное из пластины углерода, в котором внедрены керамические стержни, на последних установлена пластина, в которой по внешней образующей окружности керамических стержней изготавливают п-образные полости глубиной (1,5-2,5) диаметра керамических стержней. В той же пластине по внутренней образующей керамических стержней выполнена п-образная полость диаметром, равным или превышающим на 10% диаметр термокомпенсатора. В области дна полости выполняют сквозное отверстие, боковая поверхность которого наклонена относительно нормали к поверхности пластины на угол 3-5 градусов для обеспечения качественного набора элементов полупроводникового прибора в кассету. Причем размер диаметра сквозного отверстия в области поверхности потолка п-образной полости равен внутреннему диаметру, проведенному по образующей керамических стержней. Технический результат – повышение производительности закладки и выемки элементов полупроводниковых диодов, облегчение процесса набора элементов структуры полупроводникового диода в ручном и в автоматизированном режимах. 3 ил.

Изобретение относится к средствам контроля микронеровностей поверхностей, полученных в результате воздействия машиностроительных технологических операций на шероховатую поверхность. Исследуемую поверхность очищают плазмохимическим травлением в среде инертного газа при режимах, не допускающих распыление материала исследуемой поверхности, сразу после очистки на поверхность наносят жидкость в виде капли фиксированного объема. Посредством скоростной цифровой видеокамеры регистрируют момент окончания растекания капли жидкости, после чего определяют периметр и площадь растекшейся капли и убирают скоростную цифровую видеокамеру, затем над каплей устанавливают импульсный источник света и производят кратковременный световой импульс. Убирают импульсный источник света и видеокамерой регистрируют момент окончания растекания капли жидкости, нагретой световым импульсом, после чего определяют периметр и площадь растекшейся капли, нагретой световым импульсом. По полученным данным определяют фрактальную размерность исследуемой шероховатой поверхности. Изобретение обеспечивает повышение точности контроля уровня шероховатости поверхности и расширение диапазона исследуемых материалов. 1 ил.

Изобретение относится к измерительной технике в области микроэлектроники и предназначено для измерения чистоты поверхности подложек

Изобретение относится к испарителю многокомпонентных растворов и может быть использовано для формирования тонких пленок двойных, тройных и более сложных растворов

 


Наверх