Патенты автора Башлыкова Татьяна Викторовна (RU)

Изобретение относится к биогидрометаллургической переработке труднообогатимого бедного марганецсодержащего минерального сырья и может использоваться в горнообогатительной и металлургической отраслях для переработки марганецсодержащих природных руд и техногенных материалов. Способ включает формирование штабеля кучного биовыщелачивания марганецсодержащего минерального сырья путем чередования слоев классифицированной по крупности руды и слоев из смеси лежалых или текущего производства пиритного и пирротинового концентратов с предварительным окомкованием мелких фракций этих продуктов. Биовыщелачивание предварительно закисленного штабеля ведут раствором бактериального комплекса из штаммов тионовых железоокисляющих микроорганизмов A. Ferrooxidans, тионовых сероокисляющих микроорганизмов A. Thiooxidans и археев Ferroplasma acidiphilum. Прирост извлечения марганца из упорных руд в товарную продукцию составляет 20-55%. Техническим результатом является повышение эффективности переработки упорного марганецсодержащего минерального сырья. 5 з.п. ф-лы, 3 пр.

Изобретение относится к цветной металлургии, а именно к биовскрытию и биовыщелачиванию цветных и благородных металлов из упорных сульфидных руд и отработанных штабелей кучного выщелачивания, и может использоваться в горнообогатительной, горно-химической, металлургической отраслях, в том числе на объектах в криолитозонах. Способ включает послойное формирование штабеля из фракций упорной сульфидной руды и материала прошедшего естественное природное обезвреживание отработанного штабеля кучного цианидного выщелачивания благородных металлов. Фракции получают высокоинтенсивным виброгрохочением с последующим окомкованием мелких фракций. Биоокисление и биовыщелачивание предварительно закисленного штабеля ведут раствором с биокомплексом тионовых железоокисляющих, тионовых сероокисляющих и металлотолерантных экстремофильных микроорганизмов. Прирост извлечения золота в товарный продукт составляет 20-40%, серебра - 30-80%. Техническим результатом является повышение эффективности и глубины переработки упорного минерального сырья природного и техногенного происхождения с получением дополнительной высоколиквидной товарной продукции. 4 з.п. ф-лы, 1 табл., 2 пр.

Изобретение относится к комплексному способу переработки шлаков. Способ включает обогащение исходного сырья и биовыщелачивание с получением продуктивного раствора. При этом в качестве исходного сырья используют лежалые шлаки медеплавильного производства с повышенными содержаниями металлов Cu, Pb, Zn, Sn, Sb, As, Bi, Fe, которые направляют на механическое обогащение с получением коллективного концентрата и хвостов. Полученные хвосты подвергают окомкованию и кучному биовыщелачиванию с получением продуктивного раствора с извлечением в него Cu, Zn, Fe, Sb, As и твердого остатка. Полученный остаток направляют на пирометаллургическую переработку с получением чернового свинца и вторичного шлака. Продуктивный раствор биовыщелачивания направляют на цементацию меди с получением цементационной меди и раствора, направляемого на осаждение из него арсената кальция и получение железооксидного транспарентного пигмента. Техническим результатом является повышение эффективности и глубины переработки шлаков с получением дополнительной товарной продукции. 9 з.п. ф-лы, 3 табл., 2 пр.
Изобретение относится к обогащению руд благородных металлов и может использоваться в горно-обогатительной и металлургической отраслях для переработки природного и техногенного минерального сырья. Способ флотации упорных труднообогатимых руд благородных металлов включает измельчение до 0,1-0,5 мм упорной труднообогатимой руды благородных металлов, направление ее на гравитационное дифференцирование с получением условно называемых «тяжелой», «промежуточной» и «легкой» фракций, обладающих различной совокупностью физических свойств по плотности, крупности и морфологии раскрытых частиц и минеральных фаз, и флотацию этих фракций в отдельных циклах с получением объединенного золотосодержащего сульфидного концентрата. Гравитационное дифференцирование ведут на винтовых аппаратах с большой площадью разделительной поверхности и с наложением центробежных сил. При гравитационном дифференцировании выходы «тяжелой», «промежуточной» и «легкой» фракций поддерживаются близкими к процентному соотношению 10:45:45 соответственно. «Тяжелая», «промежуточная» и «легкая» фракции гравитационного дифференцирования поступают на флотацию в отдельных циклах по замкнутой схеме с основной и контрольной операциями. При необходимости «тяжелую» фракцию гравитационного дифференцирования перед флотацией доизмельчают. При необходимости объединенный золотосодержащий сульфидный концентрат перечищают. Флотацию фракций гравитационного дифференцирования ведут при pH пульпы 5,5, плотности пульпы 30% твердого, расходе жидкого стекла - 400-500 г/т, бутилового ксантогената - 250-300 г/т, соснового масла - 70-80 г/т, полиакриламида при флотации «легкой» фракции - 8-10 г/т с дозировкой в контрольные операции вдвое меньшего количества собирателя и пенообразователя, а в перечистные - втрое меньшего количества реагентов. Технический результат - повышение эффективности обогащения упорных труднообогатимых руд благородных металлов с повышением качественно-количественных показателей переработки и снижением потерь ценных компонентов. 6 з.п. ф-лы, 2 пр.
Изобретение относится к способу утилизации отходов сернокислотных железосодержащих растворов гидрометаллургических производств. Способ включает осаждение из упомянутых растворов твердого сульфата железа двухвалентного Fe2SO4⋅7H2O. Затем его направляют на биоокисление раствором, состоящим из культивированных на питательной среде 9К микроорганизмов Ас. ferrooxidans и Ac. Thiooxidans, в непрерывном чановом режиме с протоком при атмосферном давлении в течение 12-50 часов при средней скорости окисления 1-1,5 г/л в час с переводом железа двухвалентного в трехвалентное. Далее добавляют щелочь для повышения рН раствора и получения осадка твердого сульфата железа трехвалентного и осуществляют его ультразвуковую отработку с получением продукта для производства железооксидных пигментов. Техническим результатом является повышение глубины переработки железосодержащих отходов, снижение затрат на утилизацию отходов и получение высоколиквидных транспарентных пигментов наноразмерности. 4 з.п. ф-лы, 1 пр.

Изобретение относится к биогидрометаллургическому вскрытию золота и серебра в отработанных штабелях кучного выщелачивания и может использоваться в горно-обогатительной, горно-химической, металлургической отраслях. Способ включает естественное природное обезвреживание штабеля кучного цианидного выщелачивания, разделение материала по крупности на продуктивную и непродуктивную фракции посредством высокоинтенсивного виброгрохочения с одновременной водной промывкой материала. Продуктивную фракцию направляют на окомкование с цементом и сульфатом двухвалентного железа, переукладку в новый штабель, биовскрытие золота и серебра с использованием раствора бактериального комплекса микроорганизмов Ac. ferrooxidans и Ac. thiooxidans собственного биоценоза, цианирование, контрольную водную промывку штабеля. Техническим результатом является повышение глубины переработки минерального сырья с получением дополнительной товарной продукции. 4 з.п. ф-лы, 1 табл., 2 пр.

Изобретение относится к способу предварительной концентрации твердых полезных ископаемых и может использоваться для предварительного обогащения руд черных и цветных металлов. Способ предконцентрации твердых полезных ископаемых заключается в том, что перед формированием планового рудопотока, по данным первичного геолого-геофизического кернового опробования осуществляют выявление неравномерности распределения твердых полезных ископаемых в недрах путем анализа фракционного состава руды по содержаниям полезных, вредных компонентов, степеней контрастности и обогатимости руд в недрах с определением теоретически достижимых плановых показателей совместной переработки горнорудной массы для отдельных групп разведочных скважин (эксплуатационных блоков). Формирование планового рудопотока заданного качества проводят по граничному содержанию полезных, вредных компонентов посредством радиометрической порционной сортировки в транспортных емкостях с использованием рудоконтролирующих станций (РКС). Граничное значение признака разделения горнорудной массы на РКС устанавливают по содержанию полезных компонентов, равному середине линейной области селективного режима разделения руд при кусковой сепарации по результатам анализа семейства кривых контрастности и обогатимости руд в недрах месторождения. Граничный режим разделения выбирают так, чтобы содержание полезных компонентов в обедненном продукте РКС равнялось середине линейной области селективного разделения руд при кусковой сепарации, выраженной в единицах содержания полезного, вредного компонента. Обедненный продукт РКС дробят до крупности, регламентируемой способом последующей кусковой сепарации, разделяют на машинные и немашинные классы и проводят кусковую сепарацию машинных классов с направлением обогащенного продукта РКС, концентрата кусковой сепарации и немашинных классов на фабричную переработку, а отвальной пустой породы со стадии кусковой сепарации с массовой долей ценных компонентов, не превышающей принятого кондициями бортового содержания ценного компонента, в отвал. Технический результат - повышение эффективности обогащения руд за счет уменьшения степени разубоживания добываемой руды, снижения необратимых потерь ценных компонентов и объемов направляемого на фабричное обогащение минерального сырья при повышении и стабилизации его качества, а также повышения полноты выемки рудной массы из недр. 3 з.п. ф-лы, 3 табл.

Изобретение относится к гидрометаллургической очистке от железа кварцевых песков различной степени ожелезненности и может использоваться в горно-обогатительной, металлургической, стекольной, керамической, химической, электротехнической отраслях, в промышленности по производству строительных материалов. Сущность способа заключается в очистке от железа кварцевых песков в блоках по месту залегания песков или в чановом варианте со смачиванием и орошением песков культуральным раствором, содержащим факультативные анаэробы Saccharomyces, Oidium, Bacillus, Bacterium. Достигаемая степень очистки песков от железа 85-99%. Технический результат - повышение эффективности очистки от железа кварцевых песков различной степени ожелезненности по упрощенной технологии в экологически безопасных условиях. 7 з.п. ф-лы, 1 табл., 2 пр.
Изобретение относится к гидрометаллургической переработке труднообогатимых свинцово-цинковых руд. Сущность способа состоит в направлении рудного материала на отсадку с получением первого готового свинцового концентрата, хвостов и промпродукта отсадки, который после измельчения обогащают на концентрационных столах с выделением второго готового свинцового концентрата, отвальных хвостов и промпродукта столов. Промпродукт после доизмельчения направляют на биовыщелачивание цинка с использованием бактериального комплекса аутотрофных тионовых микроорганизмов с переводом в продуктивный раствор 90-95% цинка. Кек биовыщелачивания без доизмельчения направляют на доизвлечение свинца концентрацией на столах с получением кондиционного свинцового промпродукта и отвальных хвостов. Техническим результатом является повышение эффективности переработки труднообогатимых свинцово-цинковых руд по упрощенной и экологически безопасной технологии с увеличением степени извлечения цинка и свинца. 3 з.п. ф-лы, 2 пр.

Изобретение относится к гидрометаллургической переработке фосфористых магнетитовых руд. Способ переработки включает получение чернового магнетитового концентрата крупностью -100 мкм магнитной сепарацией. Далее ведут его биовыщелачивание с использованием биокомплекса ацидофильных тионовых микроорганизмов Ac. ferrooxidans и Ac. Thiooxidans и одностадиальную мокрую магнитную сепарацию кека биовыщелачивания с получением магнетитовых концентратов высокого качества, немагнитной фракции и раствора биовыщелачивания с выводом в него более 40% фосфора, 80% меди, 90% цинка. Техническим результатом является повышение эффективности переработки фосфористых магнетитовых руд сложного вещественного состава с упрощением и удешевлением технологии переработки экологически безопасным способом, повышением качества конечных продуктов и снижением затрат на переработку. Способ устойчив к изменению вещественного состава сырья. 5 з.п. ф-лы, 1 табл., 1 пр.
Изобретение относится к способу обогащения высокосернистых магнетитовых руд. Способ доводки чернового высокосернистого магнетитового концентрата заключается в том, что черновой высокосернистый магнетитовый концентрат без предварительного механического тонкого измельчения подвергают биовскрытию с использованием комплекса тионовых микроорганизмов. Полученный кек биовскрытия подвергают мокрой магнитной сепарации с получением серосодержащего раствора, высококачественного магнетитового концентрата и отвальных хвостов. При этом биовскрытие проводят с использованием адаптированных к железным рудам штаммов ацидофильных тионовых микроорганизмов, присущих собственному биоценозу месторождения, при соотношении твердой и жидкой фаз Т:Ж=1:5-1:7, температуре в интервале 15-45°C, начальных значениях Eh 650 мВ, pH 1,5-2,15 и атмосферном давлении. Техническим результатом является повышение эффективности обогащения железосодержащих магнетитовых руд за счет упрощения схемы переработки с сокращением стадий измельчения, снижение капитальных и эксплуатационных затрат. 6 з.п. ф-лы, 2 пр.
Изобретение относится к способу переработки смешанных медьсодержащих руд. Способ включает дробление, измельчение, гравитационное концентрирование руды и переработку концентрата. При этом руду измельчают до 0,6 мм. Гравитационное концентрирование ведут на прямоточном шлюзе мелкого наполнения с получением концентрата, промпродукта и отвальных хвостов. Концентрат и промпродукт гравитационного концентрирования направляют на биовыщелачивание в отдельных циклах с использованием бактериальных комплексов, состоящих из адаптированных к меди аутотрофных тионовых бактерий Ac.ferrooxidans, Ac.thiooxidans в активной фазе роста. Степень сокращения направляемого на биовыщелачивание материала при гравитационном концентрировании составляет 1000-1500. Биовыщелачивание ведут в чановом режиме при численности бактерий не менее 107 клеток/мл, отношении Т:Ж=1:5-1:9, активной или умеренной аэрации, температуре 15-45°C в течение 90-120 часов. Техническим результатом является повышение комплексности использования природного минерального сырья при увеличении глубины переработки и использование экологически безопасных технологических решений. 2 з.п. ф-лы, 1 пр.
Изобретение относится к способу переработки фосфогипса с извлечением редкоземельных элементов и фосфора
Изобретение относится к способам гидрометаллургической переработки минерального сырья, а именно к способам глубокой переработки промышленных отходов, и в частности к комплексной переработке фосфогипса
Изобретение относится к области гидрометаллургической переработки промышленных отходов выщелачиванием и, в частности, к способу извлечения скандия из пироксенитового сырья
Изобретение относится к области технологии неорганических пигментов, точнее к технологии железоокисных пигментов
Изобретение относится к способу переработки пиритных огарков, содержащих цветные, благородные и черные металлы, для их извлечения
Изобретение относится к гидрометаллургии, в частности к способу переработки силикатных кобальт-никелевых руд для извлечения ценных компонентов
Изобретение относится к способу переработки техногенных железосодержащих шламов с ценными компонентами
Изобретение относится к методам сухой переработки рудных материалов, например пегматитовых руд
Изобретение относится к черной и цветной металлургии, именно переработке шлаков и золошлаковых отходов

 


Наверх