Патенты автора Васильев Александр Владимирович (RU)

Изобретение относится к области электротехники, а более конкретно к емкостным преобразователям энергии, и может быть использовано для питания маломощных потребителей энергии в климатических условиях с достаточным периодическим перепадом температур, например, дневных и ночных, либо в полете искусственного спутника Земли на орбите при вхождении в тень планеты и выходе из нее. Устройство преобразует энергию перепада температур, например, между днем и ночью в электрическую энергию. Устройство содержит две зубчато-волнистых рейки 1, по которым передвигается скачкообразно шариковый упор 2, помещенный в стакановый корпус 3. Шариковый упор 2 прижимается к рейке 1 с помощью пружины 4. Стакановый корпус 3 закреплен на одном конце диэлектрической траверсы 5. На другом конце траверсы 5 закреплен такой же стакановый корпус 3. Траверса 5, с закрепленной на ней неподвижной пластиной емкости и сегнетоэлектриком 6 плотно прижимается с помощью пружин 7 к подвижной пластине емкости, закрепленной на конце бруска из диэлектрического материала 8, имеющего большое изменение своих линейных размеров при изменении внешней температуры. При этом сила давления пружин 4 и 7 рассчитывается таким образом, чтобы пружина 4 могла удерживать с помощью шариковых упоров 2 траверсу 5 неподвижной до тех пор, пока при растяжении пружины 7 ее сила будет меньше силы давления, развиваемой пружиной 4. Преимуществом такого устройства является более частое срабатывание емкостной системы преобразователя в течение суток, что увеличивает его эффективность в число срабатываний раз. Технический результат - увеличение эффективности преобразования энергии устройством в число срабатываний емкостной системы преобразователя в течение суток. 1 ил.

Изобретение относится к антенной технике и предназначено для построения цифровых АФАР. Техническим результатом является снижение требований к процессорам формирования диаграмм направленности (ДН) системы диаграммообразования. Согласно способу принятый каждым антенным элементом сигнал усиливают, преобразуют по частоте, фильтруют в полосовом фильтре и с помощью АЦП превращают в цифровую последовательность. Формируют ДН путем весового суммирования последовательностей отсчетов входных сигналов, соответствующих одним и тем же моментам квантования. Формируют антенное полотно из М N-канальных приемопередающих модулей, объединенных в подрешетки по L приемопередающих модулей, формируют последовательность отсчетов парциальных диаграмм направленности первого уровня во встроенных в приемопередающие модули процессорах формирования ДН первого уровня путем весового суммирования последовательности отсчетов N входных сигналов, соответствующих одним и тем же моментам квантования, формируют парциальные диаграммы направленности второго уровня в процессорах формирования ДН второго уровня путем весового суммирования последовательностей отсчетов с выходов процессоров формирования ДН первого уровня из состава подрешетки, формируют результирующие диаграммы направленности в процессорах формирования ДН последнего уровня, используя не более L последовательностей отсчетов парциальных диаграмм с выходов процессоров формирования ДН предыдущего уровня, при этом используют количество уровней формирования диаграммы направленности, равное целой части выражения k=logL(M-1)+2, для М>2, а для передачи последовательностей отсчетов диаграмм направленности между процессорами формирования ДН используют линии связи с последовательной передачей данных. 6 ил.

Изобретение относится к радиолокации и может быть использовано в различных радиолокационных системах, где требуется высокое разрешение по дальности. Достигаемый технический результат – снижение уровня боковых лепестков. Указанный результат достигается за счет того, что радиолокатор содержит М активных фазированных решеток (ФАР), выполненных определенным образом, при этом каждый элемент ФАР излучает и принимает фазомодулированный сигнал (частотная модуляция рассматривается как частный случай фазовой) с несущей частотой ƒk=ƒ1+Δƒ (k-1), где ƒ1 - нижняя несущая частота; Δƒ - интервал между несущими частотами, k=1…N, N - количество несущих излучаемого многочастотного сигнала (количество элементов решетки). На каждой несущей частоте ƒk осуществляется синхронная для всех элементов фазовая модуляция с полосой частот Bk≤Δƒ. В результате вся полоса частот радиолокатора будет равна Частоты ƒk взаимно когерентны, что достигается с помощью общего опорного генератора. Принятые каждым элементом ФАР сигналы после усиления и согласованной фильтрации поступают на суммирующее устройство, на выходе которого получается импульсный сигнал. Сигналы с выходов суммирующих устройств всех ФАР поступают на входы устройства умножения, выход которого соединен с входом выходного устройства. В результате уровень боковых лепестков в принятом сигнале такого локатора снижается до М×13,2 дБ. 6 ил.

Группа изобретений относится к электромагнитной совместимости (ЭМС) интегрированного радиоэлектронного комплекса (РЭК) и может быть использована для оценки его эффективности при функционировании в условиях действия непреднамеренных помех (НП) в интересах обеспечения ЭМС. Способ оценки эффективности интегрированного радиоэлектронного комплекса в условиях действия непреднамеренных помех заключается в том, что на основании определения текущих установленных параметров на передачу и прием каждого радиоэлектронного средства (РЭС), интегрированного в состав РЭК, осуществляется обработка НП в приемниках (ПРМ) РЭС, поступающих по каналам «антенна-антенна», принимается решение о преодолении НП пороговых уровней и о техническом состоянии (ТС), в котором находится РЭС, после чего осуществляется оценка электромагнитной обстановки для РЭС в соответствии с выражением, определяющим , зависящим от измерения и где - суммарное время действия НП, превысивших установленный порог обнаружения в k-й реализации j-го цикла функционирования i-го РЭС; - временной интервал превышения порога а-й НП, не пересекающийся на интервале времени с другими НП, где - время (интервал) работы i-го РЭС на прием в j-м цикле функционирования; - временной интервал превышения порога g-й группой НП, представляемый через - вектор-строка - моментов времени окончания НП g-й группы, и - вектор-строка - моментов времени начала НП g-ой группы, где wb - число НП, взаимно пересекающихся во времени в b-й группе. При этом оценку эффективности РЭС осуществляют на основе анализа ТС радиоэлектронных средств (три возможных состояния: - соответственно работоспособное состояние, состояние временного отказа и состояние полного отказа i-го (j-го, k-о) РЭС), и показателя эффективности РЭС, который определяется вероятностью потенциального выполнения i-м РЭС назначенных задач в условиях действия НП, где Ri (j) - общее количество числа циклов i-го РЭС в j-м цикле функционирования РЭК; далее на основании приоритетов РЭС (отраженных коэффициентами важности ci) реализуется оценка эффективности интегрированного РЭК, не требующая учета всех возможных вариантов (комбинаций) технических состояний РЭС на основе вероятности РРЭК (K, N, j) потенциального выполнения РЭК своих задач; здесь N - количество РЭС, интегрированных в состав РЭК. Система, реализующая способ по п. 1, содержит интерфейс-модуль ввода-вывода (500), специальный вычислитель (СВ) РЭК (400), модули оценки эффективности РЭС (501, 502, 503). Каждый из модулей состоит из антенного устройства (АУ), приемника (ПРМ), измерительного устройства (ИУ), специального вычислителя (СВ) РЭС. На входы 1, 2, 3 АУ1 (101), 13, 14, 15 АУ2 (201), …, 27, 28, 29 АУi (301) поступают НП в виде и а их учет осуществляется в зависимости от времени t по соответствующим основным, побочным и внеполосным каналам передачи сигналов. Система также содержит СВ РЭК (400) для расчета вероятности РРЭК потенциального выполнения РЭК назначенных задач в условиях действия НП; с выходов 1, 2, 3 интерфейс-модуля ввода-вывода данных (500) передаются значения векторов параметров Т, q, и С, результаты измеренных интервалов действия таких НП и - подаются с выходов 7 ИУ1 (103), 16 ИУ2 (203), …, 24 ИУi (303) на входы 10 СВ1 (104), 20 СВ2 (204), …, 34 СВi (304), где происходит их накопление и обработка (получение далее информация о полученных значениях поступает на входы 35, 36, …, (i+34) СВ (400), где и рассчитывается вероятность РРЭК; результат в виде эффективности всех РЭС и эффективности РЭК РРЭК выдается потребителю; перечисленные устройства, за исключением РЭС (ПРМ и АУ), объединены в аппаратно-программный комплекс (504). Реализация предлагаемого изобретения позволит осуществлять оценку эффективности интегрированного РЭК, функционирующего в условиях действия непреднамеренных помех, адекватно и точно учитывая при этом вклад (важность) каждого РЭС. На основе полученной оценки возможно принятие решений в интересах обеспечения ЭМС радиоэлектронных комплексов. 2 н.п. ф-лы, 10 ил., 5 табл.

Изобретение относится к радиотехнике и предназначено для использования в системах охлаждения радиоэлектронных модулей в радиоэлектронных комплексах. Технический результат заключается в независимости работы системы охлаждения от давления окружающего воздуха. Согласно способу устанавливают электронные узлы модуля на теплоотводящее основание, отводят тепло от них с помощью тепловых труб, установленных в теплоотводящем основании и соединенных одним из концов с теплостоком, расположенным на задней панели радиоэлектронного модуля. На теплостоке устанавливают один или несколько ловителей и выполняют крепежные отверстия, в качестве несущей конструкции стойки используют радиатор жидкостного охлаждения, устанавливают его вертикально, выполняют в нем отверстия для ловителей и крепежные отверстия, устанавливают радиоэлектронные модули перпендикулярно к поверхности радиатора таким образом, чтобы ловители попали в соответствующие отверстия радиатора, закрепляют радиоэлектронные модули на радиаторе с помощью винтов через крепежные отверстия, добиваясь при этом плотного соприкосновения теплостоков с поверхностью радиатора, подключают радиаторы с помощью патрубков к теплообменникам и системе прокачки жидкости. 2 ил.

Изобретение относится к приемопередающим устройствам СВЧ-колебаний, предназначенным для работы в составе активной фазированной антенной решетки (АФАР). Технический результат - снижение размеров приемопередающего модуля и снижение потерь передаваемого и принимаемого сигналов. Достигается тем, что радиоэлектронные узлы приемопередающего модуля устанавливают с двух сторон на теплоотводящее основание. В корпус приемопередающего модуля устанавливают N приемопередающих каналов с твердотельными усилителями мощности в передающей части каждого канала, а также модуль управления и цифровой обработки сигналов. При этом количество тепловых труб в теплоотводящем основании определяется числом N каналов. На переднюю панель корпуса приемопередающего модуля устанавливают N антенных элементов и соединяют каждый антенный элемент линией связи минимальной длины с одним из приемопередающих каналов, устанавливают расстояние между антенными элементами в зависимости от требуемого сектора сканирования диаграммы направленности приемопередающего модуля, а размеры передней панели приемопередающего модуля выполняют с учетом возможности формирования антенной решетки путем установки нескольких ППМ вплотную друг с другом с сохранением расстояния между антенными элементами в антенной решетке. Устанавливают размер теплостока таким образом, чтобы на задней поверхности корпуса приемопередающего модуля можно было разместить электрические разъемы. 2 ил.

Изобретение относится к антенной технике и может быть использовано в системах связи и радиолокации. Техническим результатом изобретения является получение высокого коэффициента усиления антенной решетки при низком уровне боковых лепестков (УБЛ) диаграммы направленности (ДН). Приемная мультипликативная фазированная антенная решетка (ФАР), состоящая из антенных решеток, с выходов которых сигналы поступают на входы системы перемножения, отличается тем, что элементы ФАР по случайной выборке делятся на равные части по числу решеток, при этом каждая решетка является разреженной со случайным распределением элементов по апертуре ФАР. При этом все решетки образуют двумерную ФАР заданной формы (прямоугольную, круглую, эллиптическую и др.). Элементы решеток заполняют площадь апертуры ФАР полностью (без пропуска узлов сетки). В результате максимальный уровень боковых лепестков мультипликативной диаграммы направленности будет приблизительно равен (-13,26 дБ)L, где L - количество подрешеток, образующих мультипликативную ФАР. 6 ил.

Изобретение относится к измерительной области техники. Способ оценки эффективности радиоэлектронных средств в условиях действия непреднамеренных помех (НП), заключающийся в том, что на основании определения текущего режима работы, например, i-го РЭС, а также его параметров (время работы на прием в j-м цикле функционирования порог обнаружения минимальное число опытов (реализаций) K=Kmin) осуществляют обработку в приемнике (ПРМ) НП, поступающих по каналам «антенна-антенна». Принимают решение о преодолении НП порогового уровня ПРМ и о техническом состоянии, в котором находится РЭС. После обработки НП анализируют электромагнитную обстановку в соответствии с выражением, определяющим суммарное время действия НП, превысивших установленный порог обнаружения в k-й реализации j-го цикла функционирования i-го РЭС зависящим от временного интервала превышения порога a-й НП (не пересекающийся на интервале времени работы i-го РЭС на прием в j-м цикле функционирования с другими НП) и от временного интервала превышения порога b-й группой НП τg(b)(k, wb, j). Далее оценку эффективности РЭС осуществляют на основе анализа ТС радиоэлектронных средств (два возможных состояния: работоспособное и состояние временного отказа обусловленное действием НП), и показателя эффективности РЭС, который определяется вероятностью потенциального выполнения i-м РЭС назначенных задач в условиях действия НП Технический результат заключается в возможности оценки эффективности РЭС за время цикла функционирования. 2 н.п. ф-лы, 9 ил.

Изобретение относится к пассивной радиолокации и может использоваться в одно- и многопозиционных системах воздушного радиомониторинга для повышения эффективности отождествления пеленгов с наземными источниками радиоизлучения (ИРИ). Достигаемый технический результат – повышение вероятности правильного отождествления пеленгов и точность определения местоположения ИРИ. Указанный результат в способе адаптивного пространственного отождествления пеленгов с наземными ИРИ достигается за счет того, что бортовой станцией радиомониторинга в процессе полета летательного аппарата определяют пеленги αi на ИРИ из точек xi, yi (i-я точка). Первый пеленг из полученной группы последовательно сравнивают с другими до тех пор, пока угол их пересечения не превзойдет заданную величину. Два пеленга, отвечающих указанному условию, считают опорными и находят координаты точки их пересечения. Относительно опорной точки строят доверительную область (ДО); отождествляют попадающие в ДО пеленги с ИРИ. Для каждой текущей (i-й) точки пеленгования вычисляют адаптированные к ней радиус и угловой размер ДО ИРИ; отождествляют попадающие в адаптированную ДО пеленги с ИРИ. Операции по обработке и отождествлению пеленгов с ИРИ выполняют в реальном масштабе времени. Система, реализующая способ, содержит бортовой пеленгатор, навигационную систему, устройство запоминания, два устройства сравнения, два устройства вычисления, определенным образом выполненные и соединенные между собой. Система пространственного отождествления пеленгов с наземными источниками радиоизлучения может быть реализована в рамках бортовой вычислительной системы. 2 н.п. ф-лы, 10 ил., 8 табл.

Изобретение относится к области цифровых данных. Технический результат направлен на обеспечение функции автоматизированного определения мест установки УС с привязкой к геоинформационным данным. Компьютерно-реализуемый способ геомоделирования размещения устройств самообслуживания (УС), выполняемый с помощью процессора и содержащий этапы, на которых получают с помощью цифровой карты географическую информацию, определяют на основании упомянутой информации границы населенного пункта, выполняют определение по меньшей мере одной точки места предполагаемой установки по меньшей мере одного УС в упомянутой области, получают набор метрик, содержащий по меньшей мере данные финансовых транзакций в упомянутой области и статистические данные упомянутой области, определяют и ранжируют точки предполагаемых мест установки УС на основании упомянутого набора метрик и отображают определенные одну или более точек предполагаемых мест установки УС на цифровой карте. 2 н. и 8 з.п. ф-лы, 6 ил.

Изобретение относится к радиотехнике, к частотной селекции и фильтрации радиосигналов, может быть использовано в радиолокации и в системах связи. Устройство содержит параллельно включенные полосно-пропускающие фильтры, согласованные с длительностью этой последовательности, установочные фазовращатели и сумматор. Кроме того, устройство содержит смесители, гетеродины и генератор опорного сигнала. При этом на первые входы смесителей поступает входной сигнал, а вторые входы соединены с выходами разночастотных гетеродинов. Входы гетеродинов соединены с выходом генератора опорного сигнала. Выходы смесителей соединены со входами полосно-пропускающих фильтров. Выходы полосно-пропускающих фильтров соединены со входами установочных фазовращателей, а выходы установочных фазовращателей соединены со входами сумматора. Технический результат заключается в получении высокой добротности гребенчатого фильтра. 5 ил.

Изобретение относится к радиотехнике, может быть использовано в радиолокации, а также в системах радиоэлектронного подавления. Устройство содержит систему формирования когерентной сетки частот (1), излучающие элементы (2), управляемые фазовращатели (3), систему управления фазовращателями (4), импульсные модуляторы (5), импульсный генератор (6), управляемые линии задержки (7), систему управления задержкой импульса (8), опорный генератор (9) и синхронизатор систем управления линиями задержки и управляемыми фазовращателями (10). Технический результат изобретения заключается в устранении зависимости периода формируемых импульсов от количества спектральных компонент сигнала для заданной ширины спектра. 4 ил.

Изобретение относится к области силовой электроники и может быть использовано, главным образов, для электропитания полупроводниковых импульсных усилителей мощности в радиопередающих устройствах радиолокационных систем. Технический результат от использования изобретения заключается в обеспечении высокой энергетической эффективности радиопередающего устройства во всем диапазоне его выходной мощности и повышения точности регулировки и компенсации амплитудных искажений, вносимых усилителем мощности. Для достижения технического результата система предусматривает ускоренный спад выходного напряжения разрядного преобразователя независимо от тока, потребляемого усилителем мощности. Система электропитания импульсного усилителя мощности содержит зарядный преобразователь напряжения, емкостной накопитель и регулируемый преобразователь напряжения, включенный между емкостным накопителем и цепью электропитания импульсного усилителя мощности, отличающаяся тем, что регулируемый преобразователь напряжения, состоящий из силовых ключей, схемы управления и выходного фильтра, выполнен с возможностью перевода его в режим реверса и возможностью стабилизации напряжения на выходе за счет обратной связи, введенной между выходным фильтром и входом схемы управления. 2 з.п. ф-лы, 5 ил.

Изобретение относится к радиолокации и может быть использовано в различных радиолокационных системах, где требуется высокое разрешение по дальности. Достигаемый технический результат - увеличение разрешающей способности по дальности. Указанный технический результат достигается тем, что требуемая рабочая полоса частот с шириной В разбивается на N неперекрывающихся поддиапазонов с полосой частот Вk, k=1…N, таким образом, что . Несущие частоты поддиапазонов являются взаимнокогерентными (формируются от общего опорного генератора): где - нижняя несущая частота; - интервал между несущими частотами, не превышающей максимальной полосы сигнала Вk. С целью увеличения рабочей дальности в каждом поддиапазоне осуществляется фазовая модуляция (манипуляция) сигнала (линейная или нелинейная частотная модуляция, фазокодовая манипуляция) и при приеме осуществляется сжатие сигнала. Результирующий сигнал получается в результате суммирования сжатых сигналов с учетом фазы их несущей. Для уменьшения боковых лепестков в результирующем сигнале фазовая модуляция (манипуляция) может производиться по индивидуальному закону для каждой несущей частоты. 3 ил.

Изобретение относится к области радиоэлектроники, может быть использовано, например, при конструировании многоканальных блоков систем радиосвязи или радиолокационных устройств. Технический результат - обеспечение равномерного охлаждения функциональных узлов блока, установленных на теплоотводящее основание, и снижение массы блока - достигается тем, что на теплоотводящее основание радиоэлектронного блока с теплостоком устанавливаются функциональные узлы блока. При этом теплоотводящее основание включает в себя первую и вторую стенки, скрепленные между собой, на внешние поверхности которых устанавливаются многоканальные функциональные узлы. Тепло от функциональных узлов отводится с помощью тепловых труб, зажатых между первой и второй стенками, при этом тепловые трубы размещены в направлении от передней части теплоотводящего основания до задней, один конец каждой тепловой трубы размещен вблизи наиболее тепловыделяющей области функциональных узлов, а вторые концы тепловых труб сходятся к теплостоку. Теплосток прикреплен к задней части теплоотводящего основания перпендикулярно к его плоскости, его длина короче ширины теплоотводящего основания, а с его внешней поверхности тепло снимается на внешний теплоотвод, при этом для размещения тепловых труб в первой и второй стенках теплоотводящего основания выполнены канавки. 2 ил.

Изобретение относится к антенной технике и предназначено для построения фазированных антенных решеток из состава антенно-фидерных устройств систем радиосвязи или радиолокации. Плечи симметричного вибратора УКВ выполнены из плоских пластин, которые крепятся к внешним проводникам симметрирующего устройства, выполненного в виде трехпроводной плоской воздушной линии передачи, внешние проводники которой имеют такую же ширину, как плечи вибратора. Верхняя часть центрального проводника симметрирующего устройства соединена с одним из плеч вибратора, а нижняя его часть является входом вибратора, при этом боковые края плеч вибратора загнуты под прямым углом в направлении экрана. Крепление плеч вибратора к симметрирующему устройству выполнено с наклоном 45° в направлении экрана, боковые поверхности плеч вибратора дополнительно соединены с внешними проводниками симметрирующего устройства стенками треугольной формы. Боковые края внешних проводников симметрирующего устройства загнуты под прямым углом внутрь, проводники симметрирующего устройства соединены между собой с помощью диэлектрических пластин в двух местах. Нижняя часть левого внешнего проводника симметрирующего устройства согнута под прямым углом влево для формирования левой части фланца крепления вибратора к экрану, а нижняя часть правого внешнего проводника симметрирующего устройства согнута под прямым углом вправо для формирования правой части фланца крепления вибратора к экрану, правые и левые части фланца скреплены между собой перемычками. Технический результат заключается в увеличении вибропрочности конструкции симметричного вибратора. 1 ил.

Использование: изобретение относится к радиоприемным устройствам цифровых многоэлементных активных фазированных антенных решеток (АФАР). Сущность: радиоприемное устройство состоит из N каналов, каждый канал содержит последовательно соединенные усилитель высокой частоты, вход которого является входом канала, смеситель, второй вход которого является гетеродинным входом канала и усилитель промежуточной частоты (УПЧ), управляющий вход которого является управляющим входом канала, а выход являются выходом канала и выполнен дифференциальным. Выход усилителя, первый вход которого является гетеродинным входом устройства, соединен с последовательно соединенными направленным ответвителем (НО) и делителем мощности, N выходов которого соединены с гетеродинными входами каналов устройства. Вход амплитудного детектора (АД) соединен со вторым выходом НО, а выход - со входом аналого-цифрового преобразователя (АЦП), выход которого подключен ко входу данных блока управления. Двунаправленный управляющий вход блока управления является управляющим входом устройства, первый выход подключен к управляющему входу усилителя, остальные управляющие выходы подключены к управляющим входам каналов устройства. Технический результат: упрощение настройки радиоприемного устройства и обеспечение возможности его использования в цифровых многоэлементных АФАР с разнесением составных частей в пространстве. 3 ил.

Изобретение относится к радиоэлектронным системам сопровождения, в частности к следящим системам по направлению (измерителям углов и угловых скоростей линии визирования), в которых используется инерционный привод антенны, и может быть использовано для эффективного управления инерционными следящими системами по направлению в режиме сопровождения различных воздушных объектов, включая интенсивно маневрирующие. Технический результат - повышение точности и устойчивости сопровождения по направлению интенсивно маневрирующих объектов (ИМО). Для этого способ учитывает в законе управления угловую скорость линии визирования, ее первую и вторую производные, а также инерционные свойства привода антенны, при этом в способе в сигнале управления дополнительно учитываются скорость линии визирования, ее первая и вторая производные. 6 ил.

Изобретение предназначено для выявления и радиолокационного сопровождения групп взаимодействующих воздушных объектов (ВО). Достигаемый технический результат - увеличение времени сопровождения групп ВО за счет более раннего их выявления. Указанный результат достигается за счет того, что с помощью радиолокационной станции измеряют наклонные дальности до наблюдаемых ВО, их азимуты, углы места и радиальные скорости, формируют интервальные оценки измеренных координат ВО с учетом ошибок их измерения, при этом множество ВО представляют в виде графа их взаимодействия, вершины которого соответствуют объектам, а ребра отражают выполнение условий возможного или достоверного взаимодействия между ними, выделяют достоверные и возможные группы объектов. Увеличение времени сопровождения групп ВО достигается за счет того, что возможные группы выявляются раньше, чем достоверные, а при кратковременном расхождении взаимодействующих ВО достоверные группы не снимаются сразу с сопровождения, а переводятся в класс возможных. 1 з.п. ф-лы, 6 ил.

Изобретение относится к радиолокации и может быть использовано для повышения точности определения местоположения и других параметров наземных источников радиоизлучений (ИРИ) с помощью систем радиотехнической разведки (СРТР). Достигаемый технический результат - повышение достоверности отождествления сигналов в многоцелевой обстановке. Указанный результат достигается за счет того, что СРТР вычисляет оценки X ^ j , i ( k ) координат состояния обнаруженных и сопровождаемых ИРИ, на основании которых производится отождествление результатов измерения координат Xин,i(k), полученных в k-й момент времени, с соответствующим ИРИ, при этом для каждой координаты состояния каждого обнаруженного и сопровождаемого ИРИ определяется интервал значений, зависящий от дисперсий измерения величин Xиj,i(k), дисперсий скорости изменения координат состояния X ˙ j , i ( k ) , а также от коэффициента пропорциональности K, значение которого выбирается в диапазоне от 1 до 2. Совокупность интервалов по всем координатам состояния каждого ИРИ образует многомерный строб, при попадании в который результат измерения вектора состояния Xин(k) в k-й момент времени отождествляется, например, с конкретным ИРИ. Если измеренный вектор Xин(k) не попал в пределы ни одного из стробов j-го ИРИ, где j = 1, N ¯ , то принимается решение об обнаружении нового ИРИ с индексом N+1. 2 ил.

Изобретение относится к радиотехнике и может быть использовано в радиолокации, в системах связи и других устройствах, в которых используются последовательности мощных радиоимпульсов. Техническим результатом является повышение импульсной мощности излучаемых сигналов. Для этого устройство формирования мощных импульсных сигналов на основе метода пространственно-временного преобразования многочастотного сигнала содержит сканирующую многочастотную антенную решетку (1), состоящую из изотропных в плоскости сканирования излучателей, приемную антенную решетку (2), состоящую из волноводных рупоров, элементы которой (рупоры) расположены внутри сверхразмерного волновода (6) в секторе углов 360°, линий задержки (3), фазовращателей (4) и передающей антенной решетки (5). 5 ил., 1 табл.

Использование: для рентгеновской томографии. Сущность способа: заключается в том, что облучают и воспринимают массив изображения энергетического спектра рентгеновского излучения, проходящего через объект, при этом восстанавливают изображения по теневым проекциям объекта, затем формируют, сравнивают и анализируют текущие и эталонные интегральные характеристики изображения объекта, определяют дефекты объекта и отображают результаты анализа объекта. Способ отличается тем, что восстановление трехмерного изображения осуществляют при вращении и смещении объекта по трем взаимно перпендикулярным осям системы координат, связанной с рабочей зоной объекта при корректировке управления последней, а текущие и эталонные интегральные характеристики изображения объекта формируют в виде спектральных и фрактальных признаков. Технический результат: повышение точности оценки внутренней структуры объекта, быстродействия, расширение функциональных возможностей (расширение класса диагностируемых объектов) и снижение опасности применения для обслуживающего персонала из-за значительного рентгеновского облучения. 2 н. и 14 з.п. ф-лы, 17 ил.

Изобретение относится к классу моделирующих устройств, которые следует рассматривать как учебные или тренировочные устройства. Согласно изобретению устройство содержит систему отображения отработанных сценариев, ситуационно наиболее близких к вновь разрабатываемому сценарию, систему выбора и корректировки сценария тренировки, ситуационно наиболее близкого к вновь разрабатываемому сценарию тренировки, систему ввода ситуационного описания нового варианта сценария тренировки, систему автоматической оценки отношения ситуационной релевантности сценариев тренировки, систему запоминания отработанных сценариев тренировки и их ситуационного описания. Оператор задает описание нового сценария тренировки в форме ситуационного описания, то есть в обобщенной, типизированной и сжатой форме. Далее проводится автоматическая оценка силы ассоциативной связи между отработанными сценариями и новым сценарием тренировки. На основе полученных оценок осуществляется выбор из отработанных сценариев варианта, наиболее близкого по замыслу к новому варианту сценария. Исходные данные для моделирования обстановки, соответствующие выбранному старому сценарию, используются для генерации исходных данных для моделирования обстановки по новому варианту сценария. В результате трудозатраты на разработку новых сценариев тренировки сокращаются в 20-30 раз. 1 ил.

Изобретение относится к наведению летательных аппаратов на воздушные цели (ВЦ). Достигаемый технический результат - повышение ситуационной осведомленности летчика о конечных результатах наведения и упрощение соответствующих вычислений. Указанный результат достигается за счет того, что в горизонтальной плоскости измеряют полярные координаты цели и самолета, на пункте управления (ПУ) оценивают их полярные и прямоугольные координаты, курс цели и скорости самолета и цели, вводят вспомогательную точку A, расположенную по вектору скорости самолета на расстоянии Дз, определяют требуемый курс ψT движения самолета, значение которого передают с ПУ на самолет, где измеряют его текущий курс ψс и определяют параметр управления Δψ=ψT-ψc, осуществляют управление траекторией движения самолета, при этом на ПУ оценивают курс ψc самолета и выбирают точку A путем задания ее прямоугольных координат, рассчитывают угол визирования цели относительно точки A, определяют углы пеленга, представляющие собой углы между векторами скоростей точки A и цели соответственно и линией визирования «точка A-цель», определяют значение требуемого курса ψT движения самолета из условия равенства проекций скоростей точки A и цели на перпендикуляр к линии визирования «точка A-цель», летчик оценивает возможность перехвата самолетом ВЦ с использованием визуального отображения на экране индикатора прогнозируемого положения цели (точки перехвата), для чего в вычислительной системе ПУ находят прямоугольные координаты точки перехвата по соответствующим формулам. 8 ил.

Изобретение относится к области авиации, в частности к способам траекторного управления летательных аппаратов (ЛА)

Изобретение относится к технологии выращивания монокристаллов конденсацией испаряемого или сублимируемого материала и может быть использовано в полупроводниковой промышленности

Изобретение относится к системам автоматическою регулирования, а именно к электрогидравлическим системам, предназначенным для обеспечения функционирования спуско-подъемных устройств, обеспечивающих глубоководные работы, например работу водолазного колокола, опускаемого с корабля

Изобретение относится к автоматизированным системам обработки радиолокационной информации

 


Наверх