Патенты автора Носков Юрий Геннадьевич (RU)

Изобретение относится к процессам регенерации отработанных триарилфосфатных огнестойких турбинных масел. Способ регенерации заключается в том, что в отработанное бутилированное или ксиленольное огнестойкое турбинное масло в количестве 0,4-0,8 масс. % вводят нейтрализующий агент - карбонат натрия, гидроксид кальция или оксид кальция, прокаленный при температуре 200°С в течение 2-3 ч, и интенсивно перемешивают при температуре масла 60-80°С и атмосферном давлении в течение 10-22 ч, после чего проводят фракционную дистилляцию масла с использованием обогреваемой дистилляционной колонки с температурой 250-300°С и при остаточном давлении 3-5 мм рт. ст., отбирая в качестве целевого продукта фракцию, выкипающую при температуре 240-280°С. При этом отработанное бутилированное масло перемешивают в течение 18-22 ч, отработанное ксиленольное масло перемешивают в течение 10-18 ч. Технический результат заключается в упрощении способа регенерации отработанного огнестойкого три(алкиларил)фосфатного турбинного масла, обеспечивающего восстановление комплекса параметров отработанного триарилфосфатного турбинного масла до значений соответствующих параметров свежего масла, и обеспечении его экологической безопасности. 2 з.п. ф-лы, 3 табл., 11 пр.

Изобретение относится к нефтедобыче и может быть использовано при кислотных, щелочных и других видах обработок пласта. Технический результат - широкий диапазон совместимости с водной и нефтяной фазами, низкая высаливающая способность, высокая технологическая эффективность для снятия водной блокады, совместимость с пластовой водой, улучшение экологии. Взаимный растворитель для обработки призабойной зоны пласта содержит, мас.%: метанол 18-30; этилцеллозольв 22-37; неопентилполиол или его производное 0,5-5; ацетон - остальное. 1 з.п. ф-лы, 3 табл., 17 пр.

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано при добыче, подготовке и транспортировке углеводородного сырья. Состав для ингибирования образования газовых гидратов, содержащий термодинамический ингибитор - метанол и этиленгликоль, кинетический ингибитор и воду, в качестве кинетического ингибитора содержит уротропин или неопентилполиол - 2,2-диметилолпропан, или триметилолпропан, или 2,2-бис(гидроксиметил)пропан-1,3-диол при следующем соотношении компонентов, мас.%: метанол 67,3-74,3, этиленгликоль 11,7-14,3, уротропин или неопентилполиол 0,5-2,0, вода - остальное. Технический результат – повышение ингибирования газовых гидратов в углеводородных жидкостях и газах, содержащих воду и снижение экологических последствий применения ингибитора 15 пр., 2 табл.

Изобретение относится к нефтедобыче, а именно к составам для предотвращения осаждения неорганических солей при добыче и транспорте нефти. Состав для предотвращения кальциевых солеотложений, включающий нитрилотриметилфосфоновую кислоту - НТФ, оксиэтилидендифосфоновую кислоту - ОЭДФ, моноэтаноламин - МЭА, метанол и воду, дополнительно содержит модификатор - неопентилполиол, содержащий в молекуле неопентильный фрагмент - 2,2-бис(гидроксиметил)пропан-1,3-диол, 2,2-диметилолпропан или триметилолпропан, причем НТФ, ОЭДФ и МЭА он содержит в виде смеси при мольном отношении НТФ/ОЭДФ=1,0-2,4 и мольном отношении МЭА/∑(НТФ+ОЭДФ)=3,7-4,4, растворитель в виде смеси метанола и воды при массовом отношении СН3ОН/Н2О=0,4-1,0 при следующем соотношении компонентов, мас.%: смесь НТФ, ОЭДФ и МЭА 30,2-33,7, модификатор 0,5-2, растворитель - остальное. Технический результат – повышение эффективности по отношению к отложениям карбоната и сульфата кальция в условиях высокой минерализации пластовых вод с обеспечением стабильности при низких температурах. 26 пр., 4 табл.

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для удаления и растворения асфальтосмолопарафиновых отложений (АСПО) с поверхности скважинного и нефтепромыслового оборудования, в резервуарах и нефтесборных коллекторах, напорных и магистральных трубопроводах. Состав содержит алифатический спирт, неионогенное поверхностно-активное вещество, углеводородный растворитель и модификатор - сложный эфир неопентилполиола, содержащий в молекуле неопентильный фрагмент, при следующем соотношении компонентов, мас.%: алифатический спирт - 0,1-10, неионогенное поверхностно-активное вещество - 0,1-2,0, модификатор - 0,5-5, углеводородный растворитель - остальное. В качестве модификатора он содержит эфир пентаэритритовый базовый ПЭТ-Б, эфир пентаэритритовый СНП 5750, эфир триметилолпропановый базовый ТМП-СТ или эфир неопентилгликоля и жирных кислот Synative ES 2917. В качестве алифатического спирта - метанол, этанол, изопропанол или кубовый остаток бутиловых спиртов. В качестве неионогенного поверхностно-активного вещества - оксиэтилированный алкилфенол - Неонол АФ 9-12 или Неонол АФ 9-6. В качестве углеводородного растворителя - ароматические углеводороды ФАУ, АР, ФЭ, ФБ, Нефрас-А-130/150 и/или алифатические углеводороды Нефрас-С2-80/120, петролейный эфир 70/100) и/или их смеси. Повышается эффективность удаления и разрушения АСПО, имеющих широкий диапазон содержания асфальтенов, смол и парафинов, упрощается состав и обеспечивается возможность использования при температурах ниже минус 50°С, и совместимость с пластовыми водами. 4 з.п. ф-лы, 1 табл., 8 пр.

Изобретение относится к нефтедобывающей промышленности, в частности к составам для предотвращения отложения асфальтенов, смол и парафинов, и может быть использовано в процессах добычи, транспорта и хранения нефти. Состав ингибитора образования асфальтосмолопарафиновых отложений содержит, масс. %: неионогенное поверхностно-активное вещество - оксиэтилированный алкилфенол - Неонол АФ 9-6 1,0-10,0, растворитель - вода - 22,5-28,5, добавка 10,5-16,0, метанол - остальное. При этом в качестве добавки используют смесь этилцеллозольва и пентаэритрита в массовом отношении 15-30. Техническим результатом от реализации изобретения является обеспечение стабильного состава ингибитора АСПО в широком температурном диапазоне и возможности его использования при температурах ниже минус 50°С, повышение эффективности ингибирования АСПО, обеспечение низкой коррозионной агрессивности, совместимости с нефтью и коммерческими деэмульгаторами, применяемыми на объектах нефтесбора и в транспортных трубопроводах. Кроме того, предлагаемый ингибитор АСПО увеличивает эффективность действия коммерческих деэмульгаторов. 1 з.п. ф-лы, 4 табл., 10 пр.

Изобретение относится к ингибиторам коррозии, которые используются в нефтегазодобывающей промышленности, в частности, к составам, применяемым в качестве ингибиторов коррозии в минерализованных средах. Способ включает получение активной основы реакцией триэтилентетрамина и жирных кислот таллового масла с образованием смеси аминоамидов и имидазолинов с массовым отношением (13-30):(70-87). После чего вводят в нее стабилизатор и перемешивают при 100-110°С. В качестве стабилизатора используют смесь этиленгликоля с пентаэритритом, взятых в массовом отношении (10-20):1, при массовом отношении стабилизатор : активная основа (0,52-0,55):1. Стабилизированную активную основу охлаждают, вводят растворитель и модификатор при перемешивании до гомогенного состояния. В качестве растворителя используют метанол или смесь метанол : вода с массовым отношением 0,6-1,2. Ингибитор содержит, мас.%: активная основа 10-20, стабилизатор 5,5-10,5, модификатор - уксусная кислота 5,1-7 и меркаптоэтанол 0,5, растворитель - метанол или смесь метанол/вода - остальное. Ингибитор обладает высокой степенью защиты в средах с высокой степенью засоленности, имеет низкую температуру застывания (ниже минус 50°С), физико-химические характеристики (плотность, вязкость, рН), удовлетворяющие эксплуатационным требованиям, обладает полной совместимостью с ингибируемой средой и может использоваться при высокой минерализации пластовых вод. Технический результат: достижение сохранения стабильности фазового состава ингибитора при низких температурах, повышение совместимости с пластовыми водами разной степени засоленности, что приводит к улучшению его антикоррозионных свойств в системе нефть - вода. 2 н. и 2 з.п. ф-лы, 1 табл., 15 пр.

Изобретение относится к процессам регенерации отработанных огнестойких масел на основе триарилфосфатов до кондиции, позволяющей их повторное использование в смазочной системе и системе регулирования турбоагрегата. Промывочный раствор для регенерации отработанного огнестойкого триарилфосфатного турбинного масла, содержит, масс. %: гидроксид натрия – 1,0-5,0 или аммиак - 3,0-10,0, динатриевая соль этилендиаминтетрауксусной кислоты - 0,1-10,0, линейный или разветвленный алифатический спирт С3-С5 - 3,0-10, вода - остальное. Причем линейный или разветвленный алифатический спирт С3-С5 представляет собой: н-пропанол, н-изопропанол, н-бутанол или н-пентанол. Для регенерации отработанного огнестойкого триарилфосфатного турбинного масла промывочный раствор вводят в количестве 40-100 масс. % и интенсивно перемешивают при температуре 40-60°С в течение 7,5-8 ч. Смесь фильтруют и отделяют масляный слой, который промывают дистиллированной водой путем смешивания. Масло отделяют от промывочной воды и сушат в вакууме, постепенно поднимая температуру масла до 80-120°С в течение 3-3,5 ч, и выдерживают при этой температуре в течение 1-1,5 ч. Технический результат заключается в упрощении способа, обеспечивающего восстановление параметров отработанного огнестойкого масла триарилфосфатного турбинного масла, до значений соответствующих параметров свежего масла. 2 н. и 1 з.п. ф-лы, 1 табл., 10 пр.

Изобретение относится к органическому синтезу и касается способа получения основы огнестойкого триарилфосфатного масла. Способ осуществляют путем смешивания трифенилфосфата с пара-трет-бутилфенолом в мольном отношении 1 : (0,45-0,55) и катализатором карбонатом калия. Полученную смесь нагревают, постепенно увеличивая температуру до 200°С, под вакуумом при остаточном давлении 10-15 мм рт.ст., отгоняя фенол. После отгонки фенола реакционную смесь охлаждают до температуры 40-45°С и катализатор нейтрализуют соляной или серной кислотой. Осадок отфильтровывают, фильтрат подвергают вакуумной фракционной перегонке при остаточном давлении 10-15 мм рт.ст., при этом во время отгонки избыточного трифенилфосфата температуру поддерживают в интервале температур кипения трифенилфосфата. Причем, вносят 0,5-1,0 масс. % карбоната калия в расчете на трифенилфосфат. Предложенные условия проведения процесса обеспечивают получение целевого продукта, соответствующего составам коммерческих смесей фенил/пара-трет-бутилфенилфосфатов, отвечающим требованиям для использования в качестве основы огнестойкого турбинного масла и в гидравлических системах управления, упрощение процесса его получения и повышение выхода. 2 з.п. ф-лы, 2 табл., 8 пр.

Изобретение относится к способу получения смешанных триарилфосфитов и может быть применено в химической промышленности. В предложенном способе проводят взаимодействие фенола с фосфорной кислотой, взятых в мольном отношении 2:1, при достижении температуры 175-250°С в течение 6,5-7 ч в атмосфере инертного газа при непрерывной отгонке азеотропной смеси фенол-вода. В продукт реакции вводят пара-трет-бутилфенол в мольном отношении 2:1 к взятой фосфорной кислоте и выдерживают реакционную смесь при этой же температуре в течение 6-7 ч. Выделяющуюся в процессе воду в виде азеотропной смеси фенол-вода отделяют непрерывной отгонкой. Получают целевой продукт, представляющий собой смесь смешанных триарилфосфатов I-IV:трифенилфосфата (I), п-трет-бутилфенилдифенилфосфата (II), ди(п-»трет-бутилфенил)фенилфосфата (III), три(п-трет-бутилфенил)фосфата (IV). Предложен новый эффективный способ получения смешанных полных (нейтральных) триарилфосфатов. 1 табл., 5 пр.

Настоящее изобретение относится к способу получения изопропилового спирта, который широко используется в качестве октаноповышающей добавки к бензинам, противообледенительной жидкости, растворителя при получении поверхностно-активных веществ. Способ заключается в гидрировании ацетона водородсодержащим газом, содержащим, об. %: водород 40-50, азот 5-20, метан 27-45, диоксид углерода 5-7 и монооксид углерода 2-6 в жидкой фазе, при использовании в качестве катализатора меди в количестве 10-30 масс. %, нанесенной на носитель в виде гранул силикагеля с размером зерна 2,8-7,0 мм, удельной поверхностью 290-330 м2/г - остальное, активированного при температуре 150-180°С сначала в токе смеси водород : азот = 1:1 по объему в течение 2-3 ч, затем в токе водорода в течение 0,5 ч. Предлагаемый способ позволяет получить целевой продукт с высоким выходом. 3 з.п. ф-лы, 2 табл., 25 пр.

Изобретение относится к способу переработки высококипящих побочных продуктов процесса получения этриола конденсацией н-бутираля с формальдегидом. Ди-ТМП с чистотой 98 мас.% и выше выделяют последовательной перекристаллизацией кубового остатка вакуумной перегонки этриола-сырца сначала из этилацетата в массовом соотношении 1:1-1,5, затем из ацетона в массовом соотношении 1:2-5. Обогащенный формалями этриола и ди-ТМП оставшийся после кристаллизации маслообразный объединенный остаток, из которого выделение ди-ТМП с чистотой не менее 98 мас.% становится невозможным, превращают в сложные эфиры этриола и ди-триметилолпропана этерификацией, для чего используют карбоновую кислоту С1-С18 или смесь кислот в присутствии 0,05-20,0 мас.% кислотного катализатора при температуре 70-250°C. Полученные сложные эфиры очищают от следов карбоновой кислоты и кислотного катализатора. Выделяющиеся в процессе превращения воду, формальдегид и метанол отводят из реакционной массы в виде азеотропов с углеводородами или в виде газопаровой смеси. Осуществление изобретения позволяет повысить эффективность и полноту переработки высококипящих побочных продуктов синтеза этриола, содержащихся в кубовом остатке вакуумной перегонки этриола-сырца, с получением из них серии востребованных в промышленности веществ и сокращением тем самым отходов в целом. 2 з.п. ф-лы, 2 табл., 15 пр.

Настоящее изобретение относится к способу гидроформилирования олефинов С6-С9 в спирты С7-С10, которые используются в качестве пластификаторов полимеров, детергентов, высокооктановой добавки к автомобильным бензинам, для производства смазочных масел, гидравлических жидкостей. Способ предусматривает контактирование сырьевых олефинов, находящихся в составе исходной фракции синтетических жидких углеводородов синтеза Фишера-Тропша с общим содержанием олефинов 40-60 масс. %, имеющих в своем составе до 30 масс. % разветвленных изомеров и более 20 масс. % изомеров с внутренней двойной связью, синтез-газа, отходящего после процесса Фишера-Тропша с мольным отношением водорода к окиси углерода в пределах 1,4-1,7, и каталитической системы, состоящей из соединения кобальта в концентрации 0,15-0,40 масс. % и фосфорорганического лиганда, в качестве которого используют трифенилфосфин в мольном отношении к кобальту в пределах 1-1,2, проведение реакции гидроформилирования при температуре 170-190°С, давлении синтез-газа 5-10 МПа, доводя при этом долю спиртов в оксопродуктах не менее чем 95 масс. %. После этого реакционную смесь охлаждают до комнатной температуры под давлением синтез-газа, продукты реакции отгоняют в вакууме 5-10 Торр при температуре до 130°С, спирты из дистиллята выделяют ректификацией, причем содержащий катализатор кубовый остаток смешивают непосредственно с исходной фракцией синтетических жидких углеводородов синтеза Фишера-Тропша, предварительно дегазированной синтез-газом, и возвращают на рецикл. Предлагаемый способ позволяет повысить долю спиртов в оксопродуктах и сохранить активность катализатора при его рецикле. 1 з.п. ф-лы, 1 табл., 11 пр.
Изобретение относится к тонкому органическому синтезу, синтезу медицинских препаратов и касается способа получения метилформиата со стабильным изотопом углерода 13С, используемого для получения диагностических препаратов, применяемых в медицинской диагностике заболеваний. Способ получения метилформиата, меченого стабильным изотопом углерода 13С, включает получение формиата натрия, меченого изотопом углерода 13С, путем обработки предварительно приготовленного раствора гидроксида натрия в метаноле с концентрацией, близкой к насыщению, моноксидом изотопа углерода при температуре 80-120°С и давлении 1,5…2,5 МПа в течение 2…2,5 часов, последовательное смешивание полученного формиата натрия, меченого изотопом углерода, с избытком метанола и избытком концентрированной серной кислоты, после чего смесь кипятят в течение 1,5…2 часов, а затем выделяют метилформиат, меченый изотопом углерода 13С. Данная технология позволяет при достаточно мягких условиях обработки получить высокую степень связывания изотопа углерода с высоким выходом соответствующего формиата натрия и с низкими потерями дорогостоящего оксида изотопа углерода. 4 пр.

Изобретение относится к способу непрерывного гидроформилирования олефинов С2-С8. Способ включает подачу в реактор сырья, синтез-газа и рециркулирующего катализаторного раствора, содержащего комплексы родия, фосфорорганические лиганды и тяжелые побочные продукты, проведение химической реакции гидроформилирования, выделение из выпуска реактора жидкой фазы, испарительное разделение жидкой фазы на продуктовые альдегиды с последующей очисткой ректификацией и катализаторный раствор, из которого часть тяжелых побочных продуктов отделяют от катализатора мембранной нанофильтрацией и удаляют, а оставшийся после этого катализаторный раствор возвращают в систему, причем после испарительного отделения альдегидов на нанофильтрацию подают только часть рециркулирующего катализаторного раствора, который предварительно разбавляют растворителем, а остальную часть рециркулирующего катализаторного раствора направляют непосредственно в реактор в обход стадии нанофильтрации. При этом подаваемый на нанофильтрацию поток поддерживают в массовом количестве, определяемом по эмпирической формуле: П·Нт·Kт/Ст исп, где П - производительность реактора по альдегидам, Нт - норма образования тяжелых продуктов на единицу массы произведенных альдегидов, Ст исп - концентрация тяжелых продуктов в катализаторном растворе на выходе испарителя, Кт - эмпирический коэффициент, выбираемый в интервале 2…5, при этом концентрацию тяжелых продуктов в этом растворе, равную Ст исп, поддерживают в пределах 0,8…0,95 масс. долей, а в качестве растворителя для разбавления катализаторного раствора, направляемого на нанофильтрацию, используют продуктовые альдегиды, добавляемые в фильтруемый поток в массовом соотношении 1:1…1:5, причем перед разбавлением альдегидами через катализаторный раствор пропускают инертный газ или водород в течение 3-10 мин при объемном соотношении газа и катализаторного раствора не меньше чем 10:1, после нанофильтрации ретентат направляют на стадию испарительного отделения альдегидов от катализаторного раствора для регенерации разбавителя и возврата удержанного катализатора, а разбавитель из пермеата извлекают при ректификации основного потока продуктовых альдегидов. Предлагаемый способ позволяет снизить потери каталитически активного родиевого комплекса и фосфорорганического лиганда при отводе тяжелых побочных продуктов конденсации альдегидов, а также снизить скорость и норму образования указанных тяжелых продуктов. 3 ил., 1 табл., 18 пр.

Изобретение относится к гидрид-карбонильному полифосфитному комплексу родия со смешанными фосфорорганическими лигандами. Комплекс имеет общую формулу HRh(CO)(A)(B), где А - полифосфитный лиганд общей формулы: , в которой k+m=2, причем возможно k=0 или m=0; Х - углеводородный радикал, включающий от 1 до 50 углеродных атома углерода; Z - одинаковые или различающиеся во фрагментах m углеводородные радикалы, включающие от 2 до 30 углеродных атомов; Y - одинаковые или различающиеся углеводородные радикалы, включающие от 1 до 30 углеродных атомов; В - фосфорорганический лиганд, выбранный из органофосфина общей формулы (R1)(R2)(R3)P или органофосфинита общей формулы (R1)(R2)P(OR3), где R1, R2, R3 - углеводородные радикалы, включающие от 6 до 30 углеродных атомов. Также предложен способ получения комплекса. Полученный комплекс применяется в качестве катализатора гидроформилирования олефинов и позволяет повысить региоселективность гидроформилирования по линейным альдегидам при сохранении высокой активности и стабильности катализатора. 2 н.п. ф-лы, 1 табл., 20 пр.

Изобретение относится к контрольно-измерительной технике и может быть использовано в системах контроля объема и уровня жидкости. Техническим результатом служит повышение точности определения уровня и фиксация динамики его изменения с высокой точностью. Устройство имеет две линейные фотоэлектронные матрицы, установленные под углом к стенке емкости со стороны, противоположной размещению источника света, выполненного в виде лазера. Угол ориентации луча лазера находится в диапазоне 10…80° и связан с углом ориентации первой линейной матрицы следующей зависимостью: а со второй линейной матрицей - зависимостью: γ=90°-β, где β - угол ориентации луча к нормали к стенке емкости; α - угол наклона первой линейной матрицы к нормали к стенке емкости; γ - угол наклона второй линейной матрицы к нормали к стенке емкости; n - показатель преломления света относительно воздуха, причем лазер и обе матрицы установлены с возможностью изменения угла наклона. Данное устройство позволяет с высокой точностью определять уровень жидкости в емкости, скорость и направление его изменения. 1 з.п. ф-лы, 1 ил.

Настоящее изобретение относится к способу непрерывного гидроформилирования олефинов С3-С21 в альдегиды в присутствии каталитической системы, состоящей из индивидуальных компонентов - растворимого соединения родия, дифосфитного лиганда и дополнительного промотирующего фосфорорганического лиганда, выбранного из монофосфина, дифосфина или монофосфита. При этом в процессе гидроформилирования ведут контроль величины и скорости изменения региоселективности процесса по линейным альдегидам, периодически вводят в реакционную смесь дифосфитный лиганд в количестве 0,1-1 моль на 1 моль загруженного родия и промотирующий лиганд в количестве 0,1-10 моль на 1 моль загруженного родия, причем дифосфитный лиганд вводят при снижении региоселективности до величины не ниже 80%, а промотирующий лиганд вводят при увеличении скорости снижения региоселективности более чем на 20% относительно скорости первого снижения региоселективности после запуска процесса гидроформилирования. Предлагаемый способ позволяет снизить расход дифосфитного лиганда при высокой региоселективности каталитической системы по линейным альдегидам. 1 ил., 1 табл., 6 пр.

Изобретение относится к способу непрерывного двухступенчатого гидроформилирования олефинов C3, C4. Способ включает подачу в реактор первой ступени свежих олефина и синтез-газа, рециркулирующего катализаторного раствора, содержащего комплекс родия, фосфорорганические лиганды, продуктовые альдегиды и тяжелые побочные продукты, проведение химической реакции гидроформилирования, выделение из газожидкостного выпуска реактора первой ступени непрореагировавшего синтез-газа с последующим разделением оставшейся части на продуктовые альдегиды, содержащую непрореагировавший олефин углеводородную фракцию и катализаторный раствор с рециклом последнего в реакторы первой и второй ступени, подачей углеводородной фракции и непрореагировавшего синтез-газа в реактор второй ступени, отличается тем, что конверсию в реакторах обеих ступеней поддерживают в пределах 75…92% в расчете на поступающий в них олефин, а отношение количества катализаторного раствора, подаваемого в реактор первой ступени к количеству катализаторного раствора, подаваемого в реактор второй ступени, устанавливают в пределах 3…10. При этом в процессе гидроформилирования концентрацию тяжелых продуктов в рециркулирующем катализаторном растворе поддерживают в интервале 80-95% посредством отвода части катализаторного раствора, обеспечивая постоянную концентрацию родия введением свежего родиевого прекурсора, а региоселективность процесса по линейным альдегидам поддерживают на уровне выше 90% путем постоянного введения дифосфитного лиганда, при этом из выпуска реактора гидроформилирования второй ступени удаляют инертные газы и газообразные побочные продукты, а оставшуюся жидкую фазу, содержащую катализатор, в полном объеме направляют в реактор первой ступени, причем отделение продуктовых альдегидов от катализаторного раствора, содержащихся в выпуске реактора первой ступени, проводят в пленочном испарителе, который продувают потоком синтез-газа, выделенного из выпуска реактора первой ступени, при этом отделенный в испарителе катализаторный раствор при удалении из зоны продувки синтез-газом сразу охлаждают. Изобретение также относится к технологической установке для осуществления предлагаемого способа. Предлагаемое изобретение позволяет снизить потери исходного сырья, повысить удельный выход целевого продукта и повысить удельную производительность реакционного объема. 2 н.п. ф-лы, 1 ил., 2 табл., 5 пр.

Настоящее изобретение относится к способу получения этриола, который является сырьем для производства сложноэфирных смазочных материалов, алкидных и эпоксидных смол, эмалей, полиэфиров и пенополиуретанов, пластификаторов полимеров, а также клеев для металлов. Способ предусматривает приготовление реакционной смеси введением н-бутираля и водного раствора NaOH в водный раствор формальдегида, конденсацию н-бутираля с формальдегидом в присутствии NaOH, последующее выделение целевого продукта из реакционной смеси экстракцией органическим экстрагентом и очистку вакуум-дистилляцией. При этом реакционную смесь готовят в течение 1,5 ч при температуре 30-46°С и рН смеси 9-10,5, в качестве экстрагента используют простые эфиры общей формулы R-O-R′, где R и R′ - одинаковые или различающиеся алифатические линейные, разветвленные или циклические одновалентные углеводородные радикалы с числом атомов углерода от 1 до 6, а экстракцию проводят под избыточным давлением при температуре на 10-100°С выше температуры кипения экстрагента при атмосферном давлении. Предлагаемый способ позволяет получить целевой продукт высокой чистоты с высоким выходом при использовании простой технологии. 9 з.п. ф-лы, 1 ил., 2 табл., 18 пр.

Изобретение относится к установке для получения альдегидов гидроформилированием олефинов С3-С4 с применением каталитической системы на основе родия. Установка включает параллельно подключенные к реактору через устройства очистки источники синтез-газа и олефина, последовательно соединенные трубопроводами с продуктовым выходом из реактора газожидкостный сепаратор высокого давления, аппарат отделения продуктовых альдегидов от катализаторного раствора, который сообщен с реактором трубопроводом рецикла катализаторного раствора, сборник продуктового альдегида, ректификационную колонну, соединенные с трубопроводом рецикла катализаторного раствора узел сбора отработанного катализатора и узел подпитки свежим катализатором, а также линию рецикла газов. При этом установка снабжена газожидкостным сепаратором низкого давления с регулятором давления газа и десорбером, последовательно установленными между газожидкостным сепаратором высокого давления и аппаратом отделения продуктовых альдегидов от содержащего родий катализаторного раствора, который выполнен в виде пленочного испарителя, установленными на выходе абгазов из сборника продуктового альдегида компрессором, холодильником-конденсатором и дополнительным сепаратором высокого давления, причем выход для газа из основного сепаратора высокого давления сообщен с десорбером, выход для газа которого сообщен с линией рецикла газов, а выходы для газа сепаратора низкого давления и дополнительного сепаратора высокого давления сообщены с пленочным испарителем, вход которого и десорбер соединены с источником синтез-газа. Осуществление гидроформилирования на предлагаемой установке позволяет повысить степень извлечения и повторного использования сырья, непрореагировавшего за один проход через реактор, повысить общую конверсию олефинов, снизить термическую деструкцию катализатора и потери продуктовых альдегидов в процессе отделения последних от катализаторного раствора, а также снизить потери катализатора в процессе рецикла катализаторного раствора. 1 ил., 1 пр.

Изобретение относится к технологической установке получения альдегидов, преимущественно из бутенов или пропилена, с применением родиевых катализаторов. Установка включает подключенные к реактору через устройства очистки источники синтез-газа и олефинов, последовательно соединенные трубопроводами с выпуском реактора газо-жидкостной сепаратор и испаритель, сборник кубового остатка которого сообщен с реактором обратным трубопроводом рецикла жидкости, а выход альдегидов из испарителя через сборник-сепаратор соединен с ректификационной колонной, а также узел отбора отработанного катализатора и тяжелых продуктов реакции. При этом установка снабжена установленным в сборнике кубового остатка испарителя датчиком уровня жидкости, устройством подготовки свежего катализаторного раствора, соединенным с обратным трубопроводом рецикла жидкости и выполненным в виде смесителя с дозатором компонентов катализатора, а узел отбора отработанного катализатора и тяжелых продуктов реакции выполнен в виде последовательно соединенных насоса с устройством его включения и отключения, измерителя потока жидкости, устройством отгонки альдегидов из отработанного катализаторного раствора и соединенного с измерителем потока жидкости и дозатором компонентов катализатора исполнительного устройства, при этом выход для альдегидов из устройства их отгонки из отработанного катализаторного раствора сообщен со смесителем устройства подготовки свежего катализаторного раствора, а датчик уровня жидкости связан с устройством включения и отключения насоса. Осуществление гидроформилирования на предлагаемой установке позволяет обеспечить постоянное оптимальное количество тяжелых продуктов реакции, оптимальный состав и количество катализаторного раствора. 1 ил., 1 пр.

Изобретение относится к способу региоселективного получения н-пентаналя, который используют для получения пластификаторов, растворителей, присадок к моторным маслам, синтетических смазочных материалов. Способ проводят в среде растворителя, содержащего альдегид, взаимодействием синтез-газа с промышленной бутан-бутеновой фракцией, в присутствии каталитической системы, содержащей родий и дифосфитный лиганд, причем реакцию проводят при содержании альдегида в растворителе не менее 10 мас.%, при температурах 80-110°C, суммарном давлении 0.7-3 МПа, давлении синтез-газа 0.5-2.5 МПа, при этом мольное отношение водорода к окиси углерода находится в пределах 5.0-0.5, мольное отношение дифосфит/Rh находится в пределах 3-15, а концентрация родия составляет 30-300 ppm, причем в реакционную смесь добавляют антиоксиданты, выбранные из бисфенолов общих формул: содержание которых составляет 10-40 моль на 1 г-ат. родия, где R - углеводородные одновалентные радикалы или водород. 1 табл., 26 пр.

Изобретение относится к способу получения альдегидов гидроформилированием терминальных или внутренних олефинов в присутствии каталитической системы, содержащей родий и моно- или полифосфитный лиганд. При этом в реакционную смесь добавляют антиоксидант, в качестве которого используют фенолы или тиомочевины, общих формул: , где R - одинаковые или различающиеся алифатические или ароматические одновалентные радикалы или водород, а гидроформилирование проводят в жидкой фазе в среде растворителя, в качестве которого используют альдегид, при концентрации родия 0,1-2 ммоль/л, при температуре 20-150°C и давлении 0,2-5 МПа, при этом количество антиоксиданта составляет 1-30 моль на 1 моль фосфитного лиганда. Изобретение позволяет эффективным способом получить целевые продукты при снижении расходов на сырье. 2 табл., 15 пр.

Изобретение относится к тонкому органическому синтезу, синтезу медицинских препаратов и касается способа получения карбамида со стабильным изотопом углерода 13C для использования в медицинской диагностике заболеваний желудочно-кишечного тракта

Изобретение относится к технологии очистки газов

Изобретение относится к новому способу получения применяемого в медицинской диагностике заболеваний карбамида со стабильным изотопом 13С, включающему взаимодействие меченого диоксида углерода и оксида этилена при температурах 80-150°С, давлении 2.1-6 МПа в присутствии катализатора - комплекса бромида цинка с третичными органофосфинами при мольном отношении оксида этилена к катализатору 500-5000:1 с последующим выделением меченого этиленкарбоната и аммонолиз выделенного этиленкарбоната при температуре 120-170°С и давлении 2.8-4.7 МПа

Изобретение относится к основному органическому синтезу и касается способа получения этиленгликоля совместно с карбамидом из диоксида углерода, оксида этилена и аммиака

Изобретение относится к способу получения 1- 13С-каприловой кислоты, которая используется в качестве диагностического препарата при диагностике моторно-эвакуаторной функции желудка

Изобретение относится к способу получения альдегидов С3-С21, заключающийся в том, что олефины подвергают гидроформилированию в присутствии каталитической системы, содержащей родий, полифосфитный лиганд, имеющий общую формулу: ,где k+m 2, причем, возможно, k=0 или m=0; X - углеводородный радикал, включающий от 1 до 50 углеродных атомов; Z - одинаковые или различающиеся в фрагментах m углеводородные радикалы, включающие от 2 до 30 углеродных атомов; Y - одинаковые или различающиеся углеводородные радикалы, включающие от 1 до 30 углеродных атомов, и фосфорсодержащий промотирующий лиганд, выбранный из монодентатного органофосфина, бидентатного органодифосфина и органофосфита, а затем отделяют продуктовые альдегиды от катализаторного раствора посредством дистилляции, при этом мольное отношение промотирующий лиганд/Rh составляет 1-50

 


Наверх