Патенты автора Спирин Александр Иванович (RU)

Изобретение относится к области техники, преимущественно космической, а именно к системам электропитания (СЭП) аппаратов, преимущественно космических, и может быть использовано при эксплуатации их солнечных батарей (СБ). Способ оценки эффективности СБ СЭП аппарата, преимущественно космического, включает повороты СБ, измерение тока СБ и определение текущего значения светового потока от Солнца и углов его падения на СБ. На выбранных временных отрезках разворачивают аппарат до полной освещенности соответственно лицевой и тыльной поверхностей СБ Солнцем. На других 2n-2 временных отрезках, n≥2 - количество СБ, разворачивают аппарат до полной освещенности разных поверхностей СБ Солнцем. Измерение суммарного тока СБ выполняют в моменты их полной освещенности на интервалах времени, когда точки пересечения каждой из плоскостей, в которых лежат СБ, с поверхностью окружающей внешней среды, видимой с СБ, затенены от Солнца. Эффективность отдельной СБ оценивают величинами тока, генерируемыми СБ при освещении соответственно ее лицевой и ее тыльной поверхностей солнечным излучением эталонной яркости по нормали к поверхности СБ. Повышается точность оценки при реализации. 1 ил.

Изобретение относится к электроснабжению космического аппарата (КА). Способ включает развороты солнечной батареи (СБ) для достижения минимального угла между нормалью к лицевой поверхности (ЛП) СБ и направлением на Солнце. Дополнительно разворачивают КА в положение полной освещенности ЛП СБ Солнцем и измеряют яркость обозреваемой с КА подстилающей земной поверхности (ПЗП) в видимом свете. Ток СБ измеряют на интервале, когда точки пересечения линии видимого с КА горизонта Земли с плоскостью СБ находятся на теневой части поверхности Земли. Производительность СБ определяют величиной тока СБ при освещении ее ЛП под прямым углом солнечным излучением эталонной яркости на указанном интервале. При этом учитывают текущую величину солнечного светового потока, углы его падения на ЛП СБ и указанную яркость ПЗП. Технический результат состоит в повышении точности контроля производительности СБ. 1 ил.

Изобретение относится к электроснабжению космического аппарата (КА). Способ включает развороты солнечной батареи (СБ) для достижения минимального угла между нормалью к лицевой поверхности (ЛП) СБ и направлением на Солнце. Дополнительно разворачивают КА в положение полной освещенности ЛП СБ Солнцем, а затем – СБ в положение, при котором точки пересечения линии видимого с КА горизонта Земли с плоскостью СБ находятся на теневой части поверхности Земли. Ток СБ измеряют на интервале, когда составляющая тока СБ от освещения ее ЛП исходящим от Земли световым потоком не превышает погрешности измерения тока СБ. Производительность СБ контролируют по результатам сравнения текущих и полученных ранее, на указанном интервале, значений тока СБ при освещении ее ЛП под прямым углом солнечным излучением эталонной яркости. При этом учитывают текущую величину солнечного светового потока на орбите КА. Технический результат состоит в повышении точности контроля производительности СБ. 1 ил.

Изобретение относится к электроснабжению космического аппарата (КА). Способ включает измерения текущего солнечного потока, углов его падения на поверхности солнечных панелей (СП) и тока, генерируемого СП. При этом разворачивают лицевую поверхность (ЛП) СП близко к направлению на Солнце, а КА - в положение полной освещенности ЛП Солнцем. Не менее n-1 СП из их общего числа n разворачивают так, чтобы угол между направлением на Солнце и нормалью к тыльной поверхности СП был менее заданного острого угла. Суммарный ток СП измеряют на интервалах времени, когда точки пересечения линии видимого с КА горизонта Земли с плоскостями, в которых лежат СП, находятся на теневой части поверхности Земли, а составляющая тока от освещения СП исходящим от Земли световым потоком не превышает погрешности измерения тока. Эффективность отдельной СП оценивают величиной ее тока, полученной по измерениям суммарного тока СП на упомянутых интервалах времени в не менее, чем n различных комбинациях указанных положений СП. Причем хотя бы в одной из комбинаций к Солнцу обращена ЛП одной СП и тыльная сторона другой СП. Технический результат состоит в определении характеристик отдельных СП. 2 ил.

Изобретение относится к аэрокосмической технике, а более конкретно к системам жизнеобеспечения. Способ регулирования температуры воздуха на борту пилотируемого космического аппарата (КА) включает определение положения относительно направления на Солнце корпуса КА и радиаторов-излучателей системы терморегулирования (СТР), задание параметров работы СТР, поддержание температуры воздуха в задаваемом диапазоне значений и контроль расхода теплоносителя в магистрали радиатора-излучателя. Дополнительно измеряют ток нагрузки бортовой электросети. Измеряют угол β между направлением на Солнце и плоскостью орбиты. Измеряют ток нагрузки и температуру воздуха. На последующих витках повторно измеряют ток нагрузки и температуру воздуха и при выходе последнего запомненного средневзвешенного значения температуры воздуха Тпосл за пределы диапазона комфортных температур для экипажа потребление электроэнергии изменяют до достижения током нагрузки прогнозируемого средневзвешенного значения. Продолжают вышеописанные действия, начиная с упомянутого повторного измерения тока нагрузки и температуры воздуха. Достигается повышение точности поддержания температуры воздуха. 2 ил.

Изобретение относится к эксплуатации солнечной батареи (СБ) космического аппарата (КА). Способ включает измерение тока СБ при задаваемых параметрах орбиты и углового положения СБ и КА и сравнение значений тока СБ, измеренных на текущем и предшествующих этапах полета. На световой части витка измеряют и прогнозируют, по параметрам углового положения СБ и КА, величину тока СБ на интервале от текущего момента времени до момента окончания световой части. Измеряют текущий уровень заряженности аккумуляторной батареи (АБ) и сравнивают его с задаваемым фиксированным значением. При их совпадении увеличивают текущее потребление электроэнергии бортовой аппаратурой на величину, определяемую из условия достижения полного уровня заряженности АБ на момент окончания световой части витка - при менее чем полном уровне заряженности АБ на интервале от текущего момента до момента окончания световой части витка. Технический результат состоит в обеспечении измерения полного тока СБ в сеансе контроля ее эффективности путём исключения неподдающихся контролю потерь тока СБ, влияющих на телеметрические данные.
Изобретение относится к эксплуатации солнечных батарей (СБ) космического аппарата (КА). Способ включает измерение тока СБ при задаваемых параметрах орбиты и углового положения СБ и КА и сравнение значений тока СБ, измеренных на текущем и предшествующих этапах полета. К моменту выхода КА на световую часть орбиты разряжают аккумуляторные батареи (АБ) КА до минимально допустимого уровня зарядки. Измеряют текущий уровень зарядки АБ и сравнивают его с максимально допустимым уровнем. Измерения тока СБ выполняют в интервале времени от начала световой части орбиты до момента достижения измеряемым уровнем зарядки АБ максимально допустимого значения. Технический результат состоит в обеспечении измерения полного тока, генерируемого СБ в сеансе контроля эффективности СБ, путём исключения неподдающихся контролю потерь тока СБ, характерных для работы СБ при максимальной зарядке АБ.
Изобретение может быть использовано для герметизации сквозного дефекта в оболочке пилотируемого космического аппарата. Формирование пробки производят путем пропитки безусадочной герметизирующей композицией центральной части салфетки из прореженного тканого материала с высокой воздухопроницаемостью и гигроскопичностью с формированием пятна, идентичного размеру и глубине сквозного дефекта. Удерживая салфетку за ее периферийную часть, вводят пропитанную безусадочной герметизирующей композицией часть салфетки в сквозной дефект на всю его глубину. Контролируют при этом выход салфетки за внешнюю часть оболочки пилотируемого космического аппарата. Подают безусадочную герметизирующую композицию в течение времени ее жизнеспособности в сквозной дефект с помощью истекающего в вакуум воздуха до заполнения дефекта с избытком. Затем удаляют избыток салфетки и контролируют герметичность образованной пробки ультразвуковым течеискателем. На сформированную пробку и зачищенную поверхность вокруг нее наносят один или более слоев безусадочной герметизирующей композиции через заданный интервал времени. Технический результат состоит в простой и надежной герметизации сквозных дефектов размером до 10 мм.

Изобретение относится к области космической техники. Способ контроля производительности солнечной батареи космического аппарата с инерционными исполнительными органами содержит этапы, на которых:- включают ориентацию солнечной батареи нормалью к рабочей поверхности на Солнце;- измеряют ток от солнечной батареи и контроль производительности солнечной батареи по результатам сравнения текущих измеренных значений тока и значений тока, измеренных на предыдущих этапах полета; - выполняют построение и поддержание в орбитальной системе координат ориентации космического аппарата;- последовательно разворачивают солнечную батарею в фиксированные положения;- измеряют ток от солнечной батареи в моменты касания видимым с космического аппарата диском Солнца верхней границы атмосферы Земли на заходе Солнца на витках;- определяют текущее значение расстояния от Земли до Солнца;- в ходе полета повторяют вышеописанные действия и контроль производительности солнечной батареи выполняют по результатам сравнения текущих и полученных на предыдущих этапах полета значений тока от солнечной батареи. Достигается повышение точности замера производительности солнечной батареи космического аппарата. 2 ил.

Изобретение относится к управлению ориентацией космического аппарата (КА) и установленных на нём солнечных батарей (СБ) с осью вращения (Y), перпендикулярной продольной оси (X) КА. По высоте орбиты определяют диапазон витков, когда угол (β) между направлением (S) на Солнце и плоскостью (4) орбиты КА (1) превышает значение, при котором длительность теневой части витка равна времени отвода тепла с заданного участка (3) поверхности КА. К начальному витку диапазона разворачивают КА на угол () от перпендикуляра (Sn) к плоскости (4) при условии, что угол между S и Sn – острый. При этом поддерживают угол < 180° - β - arctan (D/L), где D - удаленность участка (3) от оси Y; L - длина СБ (2), а угол между Sn и осью Y - менее 90°. При прохождении терминатора оси Х и Y ориентируют так, чтобы СБ затеняла участок (3). В поддерживаемой ориентации КА (в т.ч. относительно орбитальной скорости V) воздействующий на КА внешний возмущающий момент обеспечивают минимальным. Технический результат состоит в обеспечении с помощью СБ требуемого режима затенения участков поверхности КА. 7 ил.

Изобретение относится к управлению функционированием космического аппарата (КА) с солнечными батареями (СБ). Способ включает поддержание заданной ориентации КА и выставку СБ рабочей поверхностью к Солнцу. Измеряют угловое положение КА в инерциальном пространстве и ток нагрузки (Iн) от потребителей электроэнергии на КА. Поддерживают угловое отклонение СБ от направления на Солнце в диапазоне от нуля до величины, определяемой отношением тока Iн к его максимальному значению. При этом условии поворачивают СБ относительно КА до достижения заданного уровня освещенности затененного от Солнца участка поверхности КА светом, отраженным от поверхности СБ. Запоминают измеренное при этом угловое положение КА и при последующем отклонении от него текущего положения КА повторяют указанный поворот СБ. Технический результат состоит в обеспечении требуемой освещенности участков (рабочих зон) внешней поверхности КА. 2 ил.

Изобретение относится к управлению функционированием космического аппарата (КА) с солнечными батареями (СБ). Способ включает поддержание заданной ориентации КА и выставку СБ рабочей поверхностью к Солнцу. Измеряют угловое положение КА в инерциальном пространстве, ток нагрузки (Iн) и температуру СБ. Поддерживают угловое отклонение СБ от направления на Солнце в диапазоне от нуля до величины, определяемой отношением тока Iн к его максимальному значению. При этом условии поворачивают СБ относительно КА до достижения заданного уровня теплового потока на затененный от Солнца и Земли участок поверхности КА (где наблюдают дефицит тепла) от излучения, отраженного поверхностью СБ. Запоминают измеренное при этом угловое положение КА и при последующем отклонении от него текущего положения КА повторяют указанный поворот СБ. На теневой части орбиты данные операции проводят, учитывая только излучение со стороны Земли. Технический результат состоит в обеспечении требуемого нагрева (исключения переохлаждения) участков внешней поверхности КА. 2 ил.

Изобретение относится к космической технике. Способ контроля системы энергопитания снабженного солнечными батареями (СБ) космического аппарата (КА) включает измерение тока СБ и параметров углового положения СБ, определение параметров эффективности СБ и контроль системы энергопитания по результатам сравнения измеренных и расчетных значений тока СБ. На интервале измерения тока СБ определяют расстояние от Земли до Солнца, производят поворот СБ. Производят съемку освещенных Солнцем элементов конструкции КА в видимом спектральном диапазоне. По измерениям яркости элементов конструкции КА, параметрам относительного положения съемочной аппаратуры, снимаемых элементов конструкции КА, Солнца, СБ и КА, определенному расстоянию от Земли до Солнца и измерениям тока СБ уточняют значения параметров эффективности СБ. Прогнозируют ток СБ под воздействием излучения, поступающего от Солнца и освещенных Солнцем элементов конструкции КА. При выявлении рассогласования измеренных и расчетных значений тока СБ их сравнение выполняют с учетом измеренных параметров углового положения СБ относительно Солнца и элементов конструкции КА. Техническим результатом изобретения является повышение точности прогнозирования выходного тока СБ. 1 ил.

Изобретение относится к системе энергопитания космического аппарата (КА) с солнечными батареями (СБ). Способ включает измерение тока и параметров углового положения СБ. При измерении тока СБ определяют расстояние от Земли до Солнца и поворачивают нормаль к рабочей поверхности СБ до угла Q+ƒsb с направлением в надир, где Q и ƒsb – углы полураствора видимого с КА диска Земли и зоны чувствительности рабочей поверхности СБ. Производят съемку Земли в видимом спектре. По измеренной яркости Земли, параметрам относительного положения съемочной аппаратуры, Земли, Солнца, СБ и КА, расстоянию от Земли до Солнца и измеренному току СБ уточняют значения параметров эффективности СБ. При этом учитывают для планируемого интервала полета покрытие облаками и различные типы участков земной поверхности, отстоящих от трассы КА на расстояние, зависящее от угла Q. Прогнозируют ток СБ с учетом прогнозируемых расстояния от Земли до Солнца, углового положения СБ и видимых с КА облаков и указанных участков поверхности. Технический результат состоит в повышении точности прогнозирования выходного тока СБ при учете освещения СБ со стороны Земли. 1 ил.

Изобретение относится к эксплуатации солнечных батарей (СБ) космического аппарата (КА). Способ включает ориентацию нормали к рабочей поверхности СБ на Солнце (под углом αI) и измерение тока СБ. На последовательных витках орбиты измеряют угол βs между направлением на Солнце и плоскостью орбиты КА на моменты прохождения противосолнечной точки витков. Определяют изменение Δβs угла βs за виток. Измеряют ток СБ в моменты, выбираемые из условия минимизации угла αI в интервале между граничными точками фиксированных разворотов СБ. Эти точки суть ближайшие к противосолнечным точкам витков, на которых выполнено некоторое условие, зависящее от βs, Δβs, видимых с КА угловых полурастворов дисков Земли и Солнца, а также угла возвышения верхней границы атмосферы над горизонтом. В эти же моменты определяют угол αI и расстояние от Земли до Солнца, вычисляя по ним некоторый контрольный параметр и сравнивая его со значениями на предыдущих витках. Повторяют описанные действия, контролируя производительность СБ с учётом данного сравнения. Технический результат состоит в минимизации влияния подсветки от Земли на указанный контроль. 1 ил.

Изобретение относится к системам электроснабжения космических аппаратов (КА) с помощью солнечных батарей (СБ). Способ включает ориентацию СБ на Солнце, измерение на последовательных витках орбиты угла между направлением на Солнце и нормалью к плоскости орбиты КА, а также тока СБ в моменты касания верхней границы атмосферы Земли видимым с КА диском Солнца на его восходе. Определяют также угол между нормалью к плоскости орбиты КА и нормалью к рабочей поверхности СБ в фиксированном положении СБ, зависящем некоторым образом от фазы полёта, видимых с КА угловых полурастворов дисков Земли и Солнца и угла возвышения верхней границы атмосферы над горизонтом. На витках, где достигается локальный минимум модуля угла , фиксируют измеренное значение тока СБ, определяют расстояние от Земли до Солнца и значение угла между нормалью к рабочей поверхности СБ и направлением на Солнце. Вычисленный по этим данным некоторый контрольный параметр сравнивают на текущем и на предыдущих этапах полета, используя для оценки состояния СБ. Технический результат состоит в минимизации влиянии на эту оценку подсветки от Земли в начале светового участка орбиты на фоне штатного полета КА. 2 ил.

Изобретение относится к солнечным батареям (СБ) космических аппаратов (КА). Способ включает определение угла между нормалью к рабочей поверхности СБ и нормалью к плоскости орбиты КА при условии минимального затенения СБ конструкцией КА. Измеряют также угол между направлением на Солнце и нормалью к плоскости орбиты КА, а также изменение этого угла за виток. Моменты измерения зависят от момента прохождения подсолнечной точки витка и угла между радиусом-вектором КА и проекцией на плоскость орбиты указанной нормали. Разворачивают СБ в дискретные положения ориентации на Солнце с заданной точностью и измеряют ток от СБ на световом участке витка орбиты, где выполнено некоторое условие, зависящие от указанных выше углов. Повторяют описанные действия на последующих участках. Контроль производительности СБ выполняют из сравнения значений тока СБ для пар последовательных световых участков, где ток осредняют с учетом определяемого расстояния от Земли до Солнца и точности ориентации СБ на Солнце. Технический результат состоит в обеспечении одинаковых условий измерения тока от СБ на фоне штатного полета КА. 2 ил.

Изобретение относится к солнечным батареям (СБ) космических аппаратов (КА). Способ включает измерение вектора направления на Солнце в инерциальной системе координат, угла между направлением на Солнце и нормалью к плоскости орбиты КА, а также изменения данного угла за виток. При некотором условии, зависящем от этих угловых величин, измеряют ток от СБ на световом участке витка орбиты. Поддерживают орбитальную ориентацию КА, при которой ось вращения СБ, совпадающая с осью раскрытия СБ, перпендикулярна плоскости орбиты. Повторяют измерения тока на следующем световом участке, при этом разворачивают СБ в дискретные положения с заданной точностью ориентации на Солнце. Контроль производительности СБ выполняют из сравнения значений тока СБ для пар последовательных световых участков, где ток осредняют с учетом определяемого расстояния от Земли до Солнца и точности ориентации СБ на Солнце. Технический результат состоит в обеспечении одинаковых условий измерения тока от СБ в ходе штатного полета КА. 2 ил.

Изобретение относится к космической технике. Способ контроля текущего состояния панели солнечной батареи (СБ) космического аппарата (КА) включает разворот СБ относительно направления на Солнце, измерение значений тока от СБ, сравнение измеренных значений тока с задаваемыми значениями и контроль текущего состояния панели СБ по результатам сравнения. Дополнительно для каждой структурной группы фотоэлементов панели СБ поворачивают СБ относительно КА в задаваемое исходное положение, строят задаваемую исходную ориентацию КА и выполняют его поворот вокруг задаваемого вектора поворота до прохождения положений, в одном из которых все фотоэлементы группы освещены Солнцем, а в другом - затенены от Солнца корпусом КА. В процессе поворота КА непрерывно измеряют ток от СБ и определяют параметры ориентации КА. Поворачивают СБ относительно КА в другое задаваемое исходное положение и повторяют вышеуказанные операции. После выполнения операций для всех структурных групп фотоэлементов панели СБ сравнивают измеренные значения токов от СБ с их расчетными значениями. По результатам сравнения определяют работоспособность групп фотоэлементов. Техническим результатом изобретения является обеспечение определения работоспособности конкретных структурных групп фотоэлементов панели СБ. 2 ил.

Изобретение относится к космической технике. Способ контроля текущего состояния панели солнечной батареи (СБ) космического аппарата (КА) включает ориентацию рабочей поверхности СБ на Солнце, измерение значений тока от СБ, контроль текущего состояния СБ по результатам сравнения текущих измеренных значений тока и значений тока, измеренных на предыдущих этапах полета. Дополнительно поддерживают орбитальную ориентацию КА, при которой ось вращения СБ перпендикулярна плоскости орбиты и нормаль к рабочей поверхности СБ в задаваемом дискретном положении направлена в зенит. Последовательно разворачивают СБ в дискретные положения, в которых значение угла между нормалью к рабочей поверхности СБ и направлением на Солнце составляет величину менее фиксированного значения, измеряют значения угла между направлением на Солнце и плоскостью орбиты КА на моменты прохождения подсолнечной точки витков орбиты. Измеряют ток от СБ в момент прохождения подсолнечной точки витка орбиты, на котором измеряемое значение угла достигает локального минимума, определяют текущее значение расстояния от Земли до Солнца. Техническим результатом изобретения является повышение эффективности контроля состояния СБ КА.

Изобретение относится к космической технике. Способ контроля текущего состояния панели солнечной батареи (СБ) космического аппарата (КА) с инерционными исполнительными органами включает ориентацию нормали к рабочей поверхности СБ на Солнце, измерение значений тока от СБ и контроль текущего состояния СБ по результатам сравнения текущих измеренных значений тока и значений тока, измеренных на предыдущих этапах полета. Контроль состояния панели СБ выполняют по результатам сравнения полученных значений тока от СБ, каждое из которых умножено на отношение квадратов определенного на момент соответствующего измерения тока текущего значения расстояния от Земли до Солнца и среднего расстояния от Земли до Солнца. Техническим результатом изобретения является повышение точности оценки текущей эффективности СБ, обеспечение одинаковых условий замера тока от СБ на фоне штатного полета КА в ориентации, при которой суммарный внешний возмущающий момент за виток достигает минимального значения.

Изобретение относится к космической технике. Способ контроля текущего состояния панели солнечной батареи (СБ) космического аппарата (КА) включает поворот панели СБ в положения, при которых рабочая поверхность СБ освещена Солнцем, измерение значений тока от СБ, сравнение определяемого параметра, характеризующего текущее состояние панели СБ, с задаваемыми значениями и контроль текущего состояния панели СБ по результатам сравнения. Дополнительно измеряют вектор направления на Солнце в связанной с КА системе координат, определяют угол выставки СБ в ее текущее дискретное положение, определяют текущие значения угла падения солнечного излучения на поверхность защитного покрытия СБ, выполняют поворот СБ в не менее чем два выбранных дискретных положения СБ, измеряют значение тока от СБ. Состояние панели СБ оценивают по состоянию ее оптического защитного покрытия, характеризуемому текущим значением его абсолютного показателя преломления, определяемым по значениям угла падения солнечного излучения на поверхность защитного покрытия СБ и значениям тока. Техническим результатом изобретения является обеспечение оценки текущего значения абсолютного показателя преломления защитного покрытия СБ. 1 ил.

Изобретение относится к электроснабжению космических аппаратов (КА) с помощью солнечных батарей (СБ). Способ включает разворот панели СБ в рабочее положение, измерение напряжения (U) и тока (I) от СБ в моменты, когда излучение от Земли поступает на нерабочую сторону панели СБ, и определение выходной мощности СБ. При этом разворачивают КА и СБ до достижения минимальной освещенности рабочей поверхности СБ отраженным от поверхности КА солнечным излучением при А < ε, где А – угол между вектором нормали к рабочей поверхности СБ и вектором направления на Солнце; ε - угол полураствора так называемой зоны чувствительности этой рабочей поверхности. В дальнейшем измеряют значения U, I и А, определяя максимальную выходную мощность СБ как U. I/cos(А). Технический результат состоит в снижении влияния отраженного от поверхности КА излучения на измеряемую выходную мощность СБ. 1 ил.

Изобретение относится к электроснабжению космических аппаратов (КА) с помощью солнечных батарей (СБ). Способ включает разворот панели СБ в рабочее положение и измерение тока от СБ в моменты, когда излучение от Земли поступает на нерабочую сторону панели СБ. Определяют текущее значение угла падения (α) солнечного излучения на поверхность СБ. При значении α в заданном диапазоне, определяемом характеристиками оптического защитного покрытия рабочей поверхности СБ и геометрическими параметрами её зоны чувствительности, измеряют текущее значение тока (I) от СБ. Выходной ток СБ определяют по величине I с поправочным коэффициентом, зависящим от α и k - абсолютного показателя преломления защитного покрытия СБ. Технический результат состоит в обеспечении учета влияния преломления и отражения солнечного излучения оптическим защитным покрытием на измеряемый выходной ток СБ. 1 ил.

Изобретение относится к электроснабжению космических аппаратов (КА) с помощью солнечных батарей (СБ), имеющих положительную выходную мощность своей тыльной поверхности. Способ включает измерение высоты (Н) околокруговой орбиты КА и угол (ε) между направлением на Солнце и геоцентрическим радиус-вектором КА. При нахождении ε в определенном интервале, зависящем от Н, от углов (f1, f2) полураствора зон чувствительности рабочей и тыльной поверхностей СБ и от максимального значения угла (f1*) между нормалью к рабочей поверхности СБ и направлением на Солнце, - разворачивают СБ в положение, при котором излучение Земли поступает на СБ вне указанных зон чувствительности. Это положение отвечает совмещению указанной нормали с плоскостью, содержащей направление на Солнце и радиус-вектор КА. При этом угол (ρ) между этой нормалью и радиус-вектором КА лежит в интервале, зависящем от ε, f1, f2, f1*, Н и угла (γ) между направлениями от КА в надир и на ближайшую к КА точку терминатора. В данном положении измеряют напряжение, ток и выходную мощность СБ с учетом углов ε и ρ. Технический результат состоит в минимизации влияния излучения Земли при определении выходной мощности СБ. 1 ил.

Изобретение относится к электрогенерирующим системам космического аппарата (КА). Способ включает разворот панелей солнечных батарей (СБ) КА их рабочими поверхностями на Солнце. Максимальную выходную мощность СБ определяют путём измерения тока и напряжения от СБ в моменты, когда отраженное от Земли излучение падает на торцевую и/или тыльную сторону панелей СБ. При этом дополнительно разворачивают КА до достижения углами между вектором направления на Солнце и векторами нормалей к видимым с рабочих поверхностей СБ участкам поверхности КА значений ≥ 90°. Технический результат изобретения состоит в уменьшении влияния отраженного от поверхности КА излучения на данные измерений характеристик СБ. 2 ил.

Изобретение относится к управлению движением космического аппарата (КА), на котором размещены теплоизлучающий радиатор и солнечная батарея (СБ). Способ включает выполнение полета КА по орбите вокруг планеты с разворотом СБ в положение, соответствующее совмещению нормали к рабочей поверхности СБ с направлением на Солнце. Строят орбитальную ориентацию КА, при которой плоскость вращения СБ параллельна плоскости орбиты КА и СБ расположена относительно плоскости орбиты со стороны Солнца. Определяют максимальное значение угла между вектором скорости КА и перпендикуляром к поперечной оси вращения СБ, проходящим через поверхность радиатора. Определяют высоту орбиты КА и угол между направлением на Солнце и плоскостью орбиты КА. По данным высоте орбиты и углу определяют витки орбиты, на которых длительность освещенной части витка превышает разность периода обращения КА и необходимой длительности времени сброса тепла радиатором на витке. На таких витках орбиты при прохождении КА освещенной части витка поворачивают СБ вокруг поперечной оси вращения до пересечения прямой, проходящей через обращенную к Солнцу область поверхности радиатора и направленной на Солнце, с СБ. Поворачивают СБ вокруг продольной оси вращения до достижения углом между нормалью к рабочей поверхности СБ и направлением на Солнце минимального значения. Данные повороты СБ выполняют в пределах расчетного интервала времени. Технический результат изобретения состоит в повышении эффективности функционирования радиатора путем создания условий его естественного охлаждения при затенении СБ для любой высоты околокруговой орбиты КА. 5 ил.

Изобретение относится к управлению движением космического аппарата (КА), на котором размещены теплоизлучающий радиатор и солнечная батарея (СБ). Способ включает выполнение полета КА по орбите вокруг планеты с разворотом СБ в положение, соответствующее совмещению нормали к рабочей поверхности СБ с направлением на Солнце. Строят орбитальную ориентацию КА, при которой плоскость вращения СБ параллельна плоскости орбиты КА и СБ расположена относительно плоскости орбиты со стороны Солнца. Определяют высоту орбиты КА и угол между направлением на Солнце и плоскостью орбиты КА. Определяют значение (β*) данного угла, при котором длительность теневой части витка равна необходимому времени сброса тепла радиатором на витке. Определяют витки орбиты, на которых текущее значение данного угла больше β*. На этих витках выполняют повороты СБ вокруг поперечной и продольной осей вращения до достижения условий затенения радиатора СБ. При этом обеспечивают минимальное отклонение ориентации рабочей поверхности СБ на Солнце. Орбитальный полет КА выполняют по околокруговой орбите высотой не более некоторого расчетного значения. Технический результат изобретения состоит в повышении эффективности функционирования радиатора путем создания условий его естественного охлаждения при затенении СБ в любом положении КА на витке орбиты. 3 ил.

Изобретение относится к области космической техники, а именно к системам электроснабжения космических аппаратов при использовании солнечных батарей

Изобретение относится к области космической техники, а именно к системам электроснабжения (СЭС) космических аппаратов (КА), и может быть использовано при эксплуатации солнечных батарей (СБ) СЭС КА

Изобретение относится к области космической техники, к системам электроснабжения космических аппаратов, и может быть использовано при эксплуатации солнечных батарей

 


Наверх