Патенты автора Мироненко Виктор Николаевич (RU)

Изобретение относится непрерывной и полунепрерывной разливке металлов. Кристаллизатор содержит корпус с каналом подвода и отвода охлаждающей жидкости, распределительную камеру и камеру (9) первичного охлаждения слитка, разделенные, по меньшей мере, одной диафрагмой (6) и одной вертикальной перегородкой (5) и литейную камеру (4). Площади прорезей или отверстий (11) в диафрагме или площадь зазора между диафрагмой и корпусом увеличиваются по мере удаления от канала подвода охлаждающей жидкости к противоположному по диаметру положению. Таким образом потока охлаждающей жидкости через диафрагму увеличивается по мере удаления от канала подвода охлаждающей жидкости к противоположному по диаметру положению. По другому варианту камера первичного охлаждения слитка образована полостью многозаходной спиральной нарезки (12), каждый виток которой совершает, по меньшей мере, один оборот вокруг литейной камеры. Обеспечивается повышение качества отливаемого слитка за счет улучшения условий его охлаждения. 2 н. и 6 з.п. ф-лы, 2 ил., 2 пр.

Изобретение относится к обработке металлов давлением, а именно к конструкции матриц для прессования труднодеформируемых материалов с малой технологической пластичностью, в частности алюминиевых сплавов. Матрица имеет трехмерную изогнутую рабочую поверхность, которая включает вогнутый входной участок, сопряженный с выпуклым обжимным участком, плавно переходящим в калибрующий поясок, при этом профиль входного и обжимного участков матрицы выполнены в виде поверхностей 2-го порядка, образованных вращением вокруг оси матрицы кривой, состоящей из участков окружности, эллипса, параболы, гиперболы или полинома 2-го порядка. Технический результат заключается в повышении качества поверхности пресс-изделий из недостаточно пластичных в условиях термодинамического цикла прессования алюминиевых сплавов, в том числе эвтектических и заэвтектических силуминов, а также повышении технологичности их прессования. 4 з.п. ф-лы, 4 пр., 6 ил.

Изобретение относится к области обработки металлов давлением и может быть использовано при горячем прессовании прутков из труднодеформируемых сплавов, в частности из порошковых алюминиевых труднодеформируемых сплавов. Способ включает прессование заготовки из труднодеформируемого сплава, размещенной в оболочке из пластичного материала, в матрицу. Оболочку выполняют в форме стакана из разъемных обечайки и передней шайбы, а заготовку погружают в обечайку на 70-90% своей высоты. Технический результат заключается в повышении выхода годного за счет отсутствия пресс-утяжины и увеличения длины используемой части прутка. 5 з.п. ф-лы, 2 ил.

Изобретение относится к деформируемым сплавам на основе алюминия и может быть использовано для защиты космических аппаратов от микрометеоритов и техногенных тел. Сплав на основе алюминия содержит, мас. %: цинк 5,8-11; магний 1,5-3,5; медь 0,1-3; марганец 0,1-0,5; по меньшей мере один элемент из группы: бериллий, лантан, 0,0001-0,2 каждого, по меньшей мере два элемента из группы: гафний 0,05-1,0, титан, цирконий, хром, 0,05-0,3 каждого, причем при содержании двух элементов выбор осуществляется из группы: титан, цирконий, гафний, необязательно церий, 0,0001-0,2, остальное - алюминий и неизбежные примеси в сумме не более 0,7. Изобретение направлено на повышение сопротивляемости сплавов ударному воздействию. 5 ил., 2 табл.

Изобретение относится к способу гидростатического взвешивания твердого тела для определения его плотности, включающему в себя определение массы тела, погружение тела в емкость с рабочей жидкостью, уравновешивание тела до достижения гидростатического состояния, определение выталкивающей силы и последующий расчет плотности тела по отношению его массы к объему, рассчитанному исходя из значений выталкивающей силы и плотности рабочей жидкости. Способ согласно настоящему изобретению отличается тем, что проводят взвешивание тела, подвешенного на гибкой подвеске, обнуляют показания электронных весов перед его погружением в емкость с жидкостью, а значение выталкивающей силы определяют по показанию на дисплее весов после погружения тела, подвешенного на гибкой подвеске, в емкость с жидкостью. Технический результат – повышение технологичности и точности способа гидростатического взвешивания твердых тел. 1 ил.

Изобретение относится к деформируемым свариваемым сплавам на основе алюминия, предназначенным для использования в качестве противометеоритной защиты критических элементов космических аппаратов. Сплав содержит, мас.%: цинк 2-8,5, магний 1,5-3,5, марганец 0,1-0,5, хром 0,05-0,3, цирконий 0,05-0,3, гафний 0,05-1,5, бериллий 0,0001-0,01, по меньшей мере один элемент из группы: медь, титан, никель, кобальт до 0,30 каждого, алюминий и неизбежные примеси в сумме не более 0,7 - остальное. За счет однородной мелкозернистой структуры обеспечивается высокая сопротивляемость ударному воздействию при повышении прочности, удовлетворительной пластичности и свариваемости. 2 з.п. ф-лы, 5 пр., 2 табл., 6 ил.

Изобретение может быть использовано при получении паяных конструкций из алюминия и его сплавов. Припой содержит компоненты в следующем соотношении, мас.%: кремний 5-13, медь 1-13,5, цинк 2-10, никель 0,5-4,5, олово 0,1-0,3, по меньшей мере один элемент из группы, включающей стронций 0,001-0,2, натрий 0,001-0,2, титан 0,001-0,1, ванадий 0,001-0,2, по меньшей мере один элемент, выбранный из группы кобальт 0,001-0,8, молибден 0,001-0,8, бериллий 0,001-0,1, алюминий остальное. Суммарное содержание цинка и меди не превышает 15 мас.%, отношение содержания никеля к меди составляет от 1:2 до 1:4. При вакуумной пайке припой дополнительно содержит магний в количестве 0,1-1 мас.%. Припой позволяет обеспечить высокий уровень прочности паяного соединения при возможности проведения процесса пайки при температурах ниже 590°С, что позволит использовать в паяных конструкциях большинство современных конструкционных алюминиевых сплавов. 1 з.п. ф-лы, 2 табл., 3 пр.

Изобретение может быть использовано при получении паяных конструкций из алюминия и его сплавов. Припой содержит компоненты в следующем соотношении, мас. %: кремний 5-13, медь 4-7, цинк 4-7, никель 0,5-3, марганец 0,3-3, железо 0,3-3, по меньшей мере один элемент из группы, включающей стронций 0,001-0,2, бериллий 0,001-0,1, титан 0,001-0,1, натрий 0,001-0,2 и ванадий 0,001-0,2, остальное - алюминий. Отношение содержания железа к марганцу составляет от 1:1 до 1:1,1. Отношение содержания никеля к железу составляет не более 1:2. При вакуумной пайке припой дополнительно содержит магний в количестве 0,1-1 мас. %. При пайке с длительным термическим циклом припой дополнительно содержит, мас.%: кобальт 0,001-0,8 и молибден 0,001-0,8. Технический результат заключается в понижении температуры плавления припоя, повышении прочности и коррозионной стойкости получаемых паяных конструкций из алюминиевых сплавов, что обеспечивает повышение их срока службы. 2 з.п. ф-лы, 2 табл., 3 пр.

Изобретение может быть использовано при получении паяных конструкций из алюминия и его сплавов. Припой содержит компоненты в следующем соотношении, мас.%: кремний 8-13, медь 0,1-10, германий 1,5-8, железо 0,5-3, хром 0,1-2,1, марганец 0,5-3, кобальт 0,001-0,8, молибден 0,001-0,8, стронций 0,001-0,2, бериллий 0,001-0,1, титан 0,001-0,1, натрий 0,001-0,2 и ванадий 0,001-0,2, алюминий остальное. Суммарное содержание меди и германия не превышает 14 мас.%. Отношение содержания железа к марганцу составляет 1:1. Отношение содержания хрома к железу составляет от 1:1 до 1:1,2. При вакуумной пайке припой дополнительно содержит магний в количестве 0,1-1 мас.%. Изобретение обеспечивает понижение температуры плавления припоя, повышение прочности паяных конструкций, что позволяет увеличить срок их службы. 1 з.п. ф-лы, 2 табл., 3 пр.
Изобретение может быть использовано для получения полуфабрикатов из труднодеформируемых эвтектических сплавов на основе алюминия, предназначенных для применения в качестве припоя в паяных конструкциях. Осуществляют литье слитков со скоростью охлаждения металла не менее 100°C/мин. Проводят гомогенизационный отжиг слитков при температуре на 10-75°C ниже температуры неравновесного солидуса с выдержкой 1-24 ч и горячую деформацию слитка при температуре 0,75-0,99 от температуры равновесного солидуса с суммарной степенью деформации не менее 80%. После горячей прокатки осуществляют холодную прокатку плоской заготовки с проведением высокого отжига, предшествующего первому проходу, и промежуточных высоких отжигов со скоростью охлаждения, исключающей самозакаливание заготовки. Проводят финишный отжиг полученной фольги. Способ обеспечивает запас технологической пластичности заготовки, необходимый для получения фольги толщиной 0,1 мм и менее. 6 з.п. ф-лы, 4 пр.

Изобретение относится к деформируемым сплавам на основе алюминия, предназначенным для применения в паяных конструкциях. Деформируемый сплав на основе алюминия для паяных конструкций содержит, мас. %: цинк 3,4-5,0, магний 1,0-2,5, марганец 0,2-0,9, хром 0,1-1,0, цирконий 0,1-1,0, медь до 0,5, бериллий 0,0001-0,01, гафний - 0,1-1,5, титан 0,1-1,0, ванадий - 0,1-1,0, алюминий - остальное. Снижается склонность к рекристаллизации и сохраняется мелкозернистая структура после обработки по режиму пайки при температуре, близкой к солидусу. Обеспечиваются высокие характеристики механических свойств и коррозионной стойкости паяных соединений. 6 ил., 3 пр.

Изобретение относится к деформируемым сплавам на основе алюминия, предназначенным для применения в паяных конструкциях. Сплав содержит, мас.%: марганец 0,3-1,2, кремний 0,35-1,5, магний 0,4-1,4, медь 0,3-4,8, железо - 0,05-0,7, бериллий 0,0001-0,1, хром, титан, цирконий, ванадий - 0,1-1,0 каждого, алюминий - остальное, при отношении Si:Mg>0,6, причем при содержании хрома, титана, циркония, ванадия в диапазоне 0,1-0,25% каждого сплав получен путем обработки слитка, а при содержании указанных компонентов в количестве 0,25-1,0% каждого сплав получен по порошковой технологии. Технический результат заключается в получении однородной мелкозернистой структуры и улучшении технологических свойств сплава. 2 з.п. ф-лы, 3 пр., 1 ил.

Изобретение относится к области обработки металлов давлением и может быть использовано при изготовлении высокотемпературной объемной штамповкой заготовок из материалов с ограниченной пластичностью. При осуществлении каждого варианта способа, включающего осадку и формообразование заготовки пуансоном в заполненной гидростатической средой матрице с созданием одновременно гидростатического давления внутри полости матрицы и вытеснением гидростатической среды в зазор между матрицей и пуансоном или через специальные фильеры в матрице, в качестве гидростатической среды используют технологический пластифицированный металл. При этом площадь сечения фильер и зазоров между матрицей и пуансоном выбирают из условия обеспечения уровня гидростатического давления в процессе деформации, превышающего предел текучести труднодеформируемого материала. По второму варианту осуществления способа штамповку осуществляют непосредственно из порошка со степенью объемной деформации по крайней мере 5%. Повышается качество и расширяются технологические возможности. 2 н. и 2 з.п. ф-лы, 4 ил., 3 пр.

Изобретение относится к деформируемым сплавам на основе хрома, работающим в окислительных средах при повышенных температурах в течение длительного времени. Сплав на основе хрома содержит, мас.%: никель 20,0-40,0, вольфрам 0,5-5,0, ванадий 0,05-1,0, титан 0,05-1,0, железо 0,1-5,0, хром - остальное. Отношение содержания хрома к сумме содержаний никеля и железа Cr/(Ni+Fe) составляет от 1,5 до 2. Сплав характеризуется высокой пластичностью при температуре горячей деформации. Расширяется температурный диапазон работы нагруженных конструкций за счет повышения температуры перехода от диффузионной к высокотемпературной ползучести. 2 ил., 1 табл., 2 пр.

Изобретение относится к порошковой металлургии, в частности к прессовому оборудованию. Пресс содержит станину колонного типа с верхней и нижней траверсой, закрепленные на траверсах верхний и нижний пуансоны, контейнер с порошковым материалом, размещенный в вакуумной камере, и привод перемещения контейнера. Вакуумная камера включает крышку, выполненную с отверстием, в котором установлен с возможностью перемещения верхний пуансон, и герметично закрепленное на нижней траверсе пресса дно. Крышка и дно жестко соединены между собой посредством 4-х Г-образных стоек. Боковая поверхность выполнена в виде секций, одна из которых жестко соединена с крышкой, дном и двумя стойками и включает патрубок для соединения с системой вакуумирования. Остальные секции смонтированы на колоннах с возможностью поворота вокруг них. Привод перемещения контейнера включает гидроцилиндр, закрепленный на нижней траверсе, установленную с возможностью перемещения относительно нижнего пуансона силовую раму, включающую верхнюю поперечину с жестко закрепленными на ней 4-мя тягами, на которых установлен контейнер, и отверстием для нижнего пуансона и нижнюю поперечину, жестко соединенную с верхней поперечиной посредством колонн. Колонны установлены с возможностью перемещения в отверстиях, выполненных в нижней траверсе. Верхняя поперечина размещена внутри вакуумной камеры, а гидроцилиндр установлен между нижней траверсой пресса и нижней поперечиной силовой рамы. Обеспечивается получение качественных изделий из порошковых материалов с плотной структурой по всему объему без дефектов поверхности полуфабриката. 1 з.п. ф-лы, 3 ил.
Изобретение относится к порошковой металлургии, в частности к изготовлению композиционных материалов, содержащих наноразмерные частицы

Изобретение относится к порошковой металлургии, в частности к прессованию заготовок из твердых труднодеформируемых порошковых материалов и устройству для его реализации

Изобретение относится к порошковой металлургии, в частности к получению композиционных материалов на основе алюминия
Изобретение относится к порошковой металлургии, в частности к композиционным материалам на основе алюминия

 


Наверх