Патенты автора Лантратов Владимир Михайлович (RU)

Изобретение относится к полупроводниковым фотопреобразователям, которые преобразуют солнечное излучение в электроэнергию, и может быть использовано в полупроводниковой промышленности для создания систем генерации электрической энергии. Фотопреобразователь с квантовыми точками состоит из подложки (1), например Ge или GaAs, и по меньшей мере одного фотоактивного р-n перехода (2), например из GaAs или GaInAs с концентрацией индия 0-2%, содержащего базовый слой (3), например из GaAs или GaInAs с концентрацией индия 0-2%, нелегированный слой (4), например из GaAs или GaInAs с концентрацией индия 0-2%, содержащий по меньшей мере один слой самоорганизованных квантовых точек (5), выполненных посредством осаждения слоя InxGa1-xAs с содержанием индия x от 20 до 50%, эмиттерный слой (6), например из GaAs или GaInAs с концентрацией индия 0-2%. Фотопреобразователь имеет увеличенное КПД за счет повышения тока, генерируемого фотоактивным переходом на основе Ga(n)As. 5 з.п. ф-лы, 3 ил.

Способ формирования массивов квантовых точек повышенной плотности для использования в различных оптоэлектронных устройствах. Способ формирования массива квантовых точек высокой плотности включает три этапа. На первом происходит формирование зародышевого ряда квантовых точек в режиме субмонослойного осаждения, т.е. последовательного осаждения нескольких слоев напряженного материала, толщина каждого из которых не превышает один монослой, разделенных слоями ненапряженного материала толщиной несколько монослоев. Квантовые точки зародышевого ряда обладают высокой плотностью и большой шириной запрещенной зоны. На втором этапе происходит осаждение промежуточного слоя ненапряженного материала. Его толщина выбирается достаточно малой, так что поля напряжения, образующиеся от квантовых точек зародышевого ряда, могут оказывать влияние на миграцию атомов на его поверхности. На третьем этапе происходит формирование наследующего ряда квантовых точек с помощью осаждения по крайней мере одного слоя напряженного материала, толщина которого превосходит критическую толщину островкового роста. Поверхностная плотность квантовых точек наследующего ряда задается поверхностной плотностью квантовых точек зародышевого ряда и потому велика. При этом ширина запрещенной зоны квантовых точек наследующего ряда имеет значение, типичное для квантовых точек, формируемых традиционными способами. Для управления шириной запрещенной зоны квантовые точки наследующего ряда могут быть покрыты напряженной квантовой ямой. Предпочтительными материалами является InAs в качестве напряженного материала, Iny(GaAl)1-yAs в качестве напряженной квантовой ямы (y составляет от 0.1 до 0.3.), GaAs либо AlxGa1-xAs (x не превосходит 0.4) в качестве ненапряженного материала. Преимущество AlxGa1-xAs в качестве ненапряженного материала заключается в том, что при его использовании ширина запрещенной зоны квантовых точек зародышевого ряда дополнительно увеличивается, так что они не оказывают влияния на оптические характеристики образующегося массива. Технический результат: возможность формирования массивов квантовых точек с контролируемой длиной волны излучения в диапазоне от 1.05 до 1.35 мкм и поверхностной плотностью 5*1011 см-2 в расчете на один ряд. 6 з.п. ф-лы, 7 ил.

Многопереходный солнечный элемент содержит подложку p-Ge (1), в которой создан нижний p-n переход (2), и последовательно выращенные на подложке нуклеационный слой (3) n-Ga0,51In0,49P, буферный слой (4) n-Ga0,99In0,01As, нижний туннельный диод (5), средний p-n переход (6), содержащий слой тыльного потенциального барьера (7), базовый (9) и эмиттерный (11) слои, а также широкозонное окно (12), верхний туннельный диод (13), верхний p-n переход (14), содержащий слой тыльного потенциального барьера (15), базовый (16) и эмиттерный (17) слои, а также широкозонное окно (18), и контактный n+-подслой (19), Базовый слой (9) среднего p-n перехода (6) включает последовательно выращенные область переменного легирования (8), примыкающую непосредственно к слою тыльного потенциального барьера (7) среднего p-n перехода (9) и область (10) постоянного легирования. Изобретение обеспечивает увеличение собирания носителей из базового слоя среднего p-n перехода GaInP/GaInAs/Ge многопереходного солнечного элемента, что выражается в увеличении его фототока и КПД всего элемента в целом. 4 з.п. ф-лы, 2 ил., 1 пр.

Изобретение относится к полупроводниковым фотопреобразователям, в частности к концентраторным каскадным солнечным фотоэлементам, которые преобразуют концентрированное солнечное излучение в электроэнергию. Концентраторный каскадный фотопреобразователь содержит подложку (1) p-Ge, в которой создан нижний p-n переход (2), и последовательно выращенные на подложке нуклеационный слой (3) n-Ga0,51In0,49P, буферный слой (4) n-Ga0,99In0,01As, нижний туннельный диод (5), средний p-n переход (9), содержащий базовый слой (10) и эмиттерный слой (11), а также широкозонное окно (12), верхний туннельный диод (13), верхний p-n переход (14), содержащий слой (15) тыльного потенциального барьера, базовый слой (16) и эмиттерный слой (17), а также широкозонное окно (18), и контактный n+-подслой (19). При этом нижний туннельный диод содержит n - широкозонный слой (6), n++-туннельный слой (7) и p++-туннельный слой (8), примыкающий непосредственно к базовому слою (10) среднего p-n перехода (9). Изобретение обеспечивает снижение последовательного сопротивления концентрационного каскадного фотопреобразователя для обеспечения повышения эффективности преобразования высококонцентрированного солнечного излучения. 4 з.п. ф-лы, 7 ил.

Способ изготовления чипов каскадных фотоэлементов относится к солнечной энергетике. Способ включает выращивание фоточувствительной многослойной полупроводниковой структуры на германиевой подложке, последовательное выращивание на поверхности фоточувствительной многослойной структуры пассивирующего слоя и контактного слоя, создание сплошных омических контактов на тыльной и фронтальной поверхностях фоточувствительной многослойной полупроводниковой структуры. Формирование контактной сетки на фотоэлементах осуществляют локальным травлением химическим и ионно-лучевым методами омического контакта и контактного слоя для открытия части нижележащего пассивирующего слоя и создают многослойное просветляющее покрытие на открытой части пассивирующего слоя. Далее проводят разделение многослойной структуры на чипы и пассивируют боковую поверхность чипов диэлектриком. Способ позволяет уменьшить затенение фоточувствительной поверхности фотоэлементов и одновременно упростить технологию. 1 з.п. ф-лы, 7 пр., 5 ил.

Изобретение относится к устройствам преобразования световой энергии в электрическую и может быть использовано как в концентраторных фотоэлектрических модульных установках, так и в космических солнечных батареях

Изобретение относится к солнечной энергетике, в частности к способу получения чипов солнечных фотоэлементов, и может быть использовано в электронной промышленности для преобразования световой энергии в электрическую

Изобретение относится к области создания полупроводниковых приборов, чувствительных к излучению, и может использоваться в технологиях по изготовлению омических контактных систем к фотоэлектрическим преобразователям (ФЭП) с высокими эксплуатационными характеристиками, и, в частности, изобретение относится к формированию контактов к слоям GaAs n-типа проводимости, являющимся фронтальными слоями ряда структур концентраторных ФЭП, способных эффективно преобразовывать падающее излучение мощностью 100-200 Вт/см2

Изобретение относится к солнечной энергетике, в частности к способу получения чипов солнечных фотоэлементов, и может быть использовано в электронной промышленности для преобразования световой энергии в электрическую

Изобретение относится к полупроводниковым приборам, в частности к устройствам преобразования световой энергии в электрическую, и может быть использовано в концентраторных фотоэлектрических модульных установках

Изобретение относится к солнечной энергетике, в частности к способу создания солнечных элементов, и может быть использовано в электронной промышленности для преобразования световой энергии в электрическую

Изобретение относится к солнечной энергетике, в частности к способу создания фотоэлектрических преобразователей, и может быть использовано в электронной промышленности для преобразования световой энергии в электрическую

Изобретение относится к полупроводниковым фотопреобразователям, в частности к каскадным солнечным фотоэлементам, которые преобразуют энергию солнечного излучения в электрическую энергию, и может быть использовано в полупроводниковой промышленности для создания систем генерации электрической энергии

Изобретение относится к солнечной энергетике

Изобретение относится к полупроводниковым фотопреобразователям, в частности к многопереходным солнечным фотоэлементам, которые преобразуют энергию солнечного излучения в электрическую, и может быть использовано в полупроводниковой промышленности для создания систем генерации электрической энергии

Изобретение относится к солнечной энергетике, в частности к способу изготовления фотоэлектрических преобразователей, и может быть использовано в электронной промышленности для преобразования световой энергии в электрическую

 


Наверх