Патенты автора Громов Дмитрий Геннадьевич (RU)

Изобретение относится к оптическим сенсорам и может быть использовано для детектирования различных веществ или иных наноразмерных объектов и определения концентрации веществ в очень малых количествах молекул с использованием комбинационного рассеяния света. Устройство усиления комбинационного рассеяния света включает: твердую многослойную наноструктуру, содержащую подложку произвольной толщины с гладкой поверхностью, отражающий слой, первый оптически прозрачный слой, SERS-активный слой, выполненный из массива наночастиц, второй оптически прозрачный слой, расположенный поверх SERS-активного слоя, и второй SERS-активный слой, отделенный от первого SERS-активного слоя вторым оптически прозрачным слоем. Второй SERS-активный слой выполнен из массива наночастиц со средним размером, равным или меньше, чем у первого SERS-активного слоя. Технический результат изобретения заключается в повышении чувствительности SERS-подложки и расширении номенклатуры изучаемых веществ. 10 з.п. ф-лы, 2 ил.

Изобретение относится к системам пожарной безопасности, а именно к энергетически автономному устройству для обнаружения возгораний. Устройство содержит температурный чувствительный элемент (1), источник неэлектрической энергии (2), преобразователь неэлектрической энергии в электрическую (3), электронный модуль для передачи сигнала (4) в центр мониторинга для определения местоположения возгорания. Температурный чувствительный элемент (1) состоит из материала, в котором при достижении температуры окружающей среды выше порогового значения возникает самораспространяющаяся экзотермическая реакция. Источник неэлектрической энергии (2) состоит из тепловыделяющего материала. Преобразователь неэлектрической энергии в электрическую (3) представляет собой термоэлектрический генератор. Технический результат заключается в повышении автономности и надежности работы устройства, что обеспечивает возможность его использования без дополнительного контроля и обслуживания. 1 ил.

Изобретение относится к термоэлектрическим источникам питания. Сущность изобретения: автономный портативный термоэлектрический источник питания включает термоэлектрическое устройство, преобразующее тепло в электричество, источник тепла, находящийся в тепловом контакте с нагреваемой стороной термоэлектрического устройства, теплообменник, находящийся в тепловом контакте с охлаждаемой стороной термоэлектрического устройства, накопитель электрической энергии. Источник тепла содержит тепловыделяющий элемент, состоящий из веществ, между которыми может происходить самораспространяющийся высокотемпературный синтез. В тепловом контакте с нагреваемой стороной термоэлектрического генератора находится теплопровод. Источник питания содержит также теплоизолятор, который направляет тепло от тепловыделяющего элемента в сторону теплопровода, а от теплопровода к термоэлектрическому устройству, и инициатор самораспространяющегося высокотемпературного синтеза в тепловыделяющем элементе. Технический результат: обеспечение работы в автономном режиме при малых размерах без использования внешнего источника для получения тепла, что дает возможность использовать источник в любых окружающих условиях. 6 з.п. ф-лы, 1 ил.

Изобретение относится к термоэлектрическому преобразованию энергии и может быть использовано при производстве термоэлектрических охладителей и генераторов. Сущность: способ получения термоэлектрического элемента включает подготовку верхней и нижней граней ветвей термоэлемента, создание системы контактных слоев между гранями ветвей термоэлемента и коммутирующими шинами. Систему контактных слоев образуют из гомогенного многокомпонентного сплава A-B-C. Компонент A включает по крайней мере один из металлов второй подгруппы первой и восьмой группы периодической системы элементов и сплавов между ними, например Co, Ni, Fe, Pb. Компонент B включает элементы второй подгруппы четвертой, пятой и шестой групп, например Ti, Zr, Ta, Nb. Компонент C включает азот, углерод, кислород, бор. Производят термообработку либо в вакууме, либо в инертной атмосфере. В результате на гранях ветвей формируется многослойная структура. Компоненты B и C взаимодействуют друг с другом и формируют диффузионно-барьерный слой. Компонент A формирует низкоомный контактный слой на границе с полупроводниковой ветвью и катализирует рост наноструктурированного материала на диффузионно-барьерном слое, на котором методом химического осаждения из газовой фазы выращивают наноструктурированный материал. Свободное пространство в нем заполняют металлами с высокой электропроводностью, что обуславливает образование композиционного проводящего материала. Последующую коммутацию ветвей n- и p-типа осуществляют с помощью коммутирующей шины путем неразъемного соединения. Технический результат: повышение адгезии контактной системы, снижение сопротивления омического контакта к полупроводниковому материалу термоэлемента, создание препятствия взаимодействию между слоями контактной системы и взаимодействию контактной системы и полупроводникового материала термоэлектрического элемента при повышенных температурах, повышение механической прочности, надежности и эффективности термоэлектрического элемента. 8 з.п. ф-лы, 5 ил.

Использование: для изготовления многоуровневой системы межсоединений кремниевой интегральной схемы. Сущность изобретения заключается в том, что способ изготовления межсоединений полупроводниковых приборов, включающий формирование частиц нанометрового размера на поверхности, выращивание наноматериала на указанных частицах нанометрового размера, осаждение на подложку проводящего материала, формирование композитного материала из наноматериала и проводящего материала, формирование изолированных друг от друга межсоединений, перед формированием частиц нанометрового размера производится нанесение слоя сплава, который содержит компонент для формирования частиц нанометрового размера, представляющий собой элемент или комбинацию элементов из I и/или VIII группы, и компонент для формирования диффузионно-барьерного слоя, представляющий собой переходный металл или комбинацию переходных металлов из IV-VI групп Периодической таблицы элементов, и термическое воздействие на него. Технический результат: обеспечение возможности упрощения технологии формирования межсоединений прибора, повышения стойкости к электромиграции при высоких плотностях тока, повышения термической стабильности межсоединений. 6 з.п. ф-лы, 2 ил.

Использование: для изготовления многоуровневой системы межсоединений кремниевой интегральной схемы. Сущность изобретения заключается в том, что формируют в изолирующем слое кремниевой структуры, в которой выполнены полупроводниковые приборы, углубления под будущие проводники-межсоединения, формируют частицы нанометрового размера, выращивают наноматериал на указанных частицах нанометрового размера, заполняют оставшееся пространства углублений проводящим материалом, формируют композитный материал из наноматериала и проводящего материала, планаризируют поверхности кремниевой структуры, сохраняя нанесенные материалы в углублениях, перед формированием частиц нанометрового размера производится нанесение на дно и стенки углублений слоя сплава, который содержит компонент для формирования частиц нанометрового размера, представляющий собой элемент или комбинацию элементов из I и/или VIII группы, и компонент для формирования диффузионно-барьерного слоя, представляющий собой переходный металл или комбинацию переходных металлов из IV-VI групп Периодической таблицы элементов, и термическое воздействие на него. Технический результат: обеспечение возможности упрощения технологии формирования, повышения стойкости и термической стабильности межсоединений при высоких плотностях тока. 6 з.п. ф-лы, 10 ил.

Изобретение относится к области микро- и наноэлеткроники, где используются кратковременные и комбинированные источники тока. В частности, изобретение может быть использовано в качестве накопителя энергии. Способ изготовления планарного конденсатора повышенной емкости включает создание первого электрода путем формирования проводящего слоя с развитой поверхностью на проводящей электродной основе, формирование однородного по толщине тонкого диэлектрического слоя, повторяющего рельеф поверхности проводящего слоя с развитой поверхностью, и создание второго электрода путем заполнения пустот проводящим материалом между неровностями первого электрода, покрытого диэлектрическим слоем, формирование проводящего слоя с развитой поверхностью формируется из материала, имеющего анизотропию проводимости электрического тока такую, что в горизонтальном направлении электрическая проводимость выше электрической проводимости в вертикальном направлении. Технический результат - создание планарного конденсатора повышенной емкости с более высоким значением удельной мощности.10 з.п. ф-лы, 4 ил.

Изобретение относится к пьезоэлектронике и может быть использовано в миниатюрных преобразователях механической энергии в электрическую и электрической энергии с механическую, датчиках перемещений, звукоизлучающих устройствах, исполнительных и регистрирующих элементах микроэлектромеханических систем

Изобретение относится к солнечным батареям, работающим на основе принципа прямого преобразования солнечной энергии в электрическую с помощью фотоэлектрических преобразователей

 


Наверх