Патенты автора Ефименко Людмила Павловна (RU)

Способ изготовления защитного покрытия и состав шихты относятся к технологии получения защитных покрытий и составов шихты для них и могут быть использованы в металлургической, космической, ядерной технике, стекольной, химической, радиоэлектронной промышленности, а также в энергетике и машиностроении. Технический результат заключается в снижении температуры формирования защитного слоя. Способ получения защитного покрытия включает приготовление шихты путем смешения исходных компонентов, содержащих кремний и борид циркония, приготовление шликера, нанесение шликера на подложку и последующую термообработку полученной заготовки в воздушной среде, причем на стадии приготовления шихты в нее дополнительно добавляют карбид бора при следующем соотношении компонентов, мас. %: Si 65-75, ZrB2 10-30, В4С 10-30, приготовление шликера осуществляют с использованием органического связующего в виде ацетонового раствора кремниевой кислоты в количестве 5-10 мас. % свыше 100% массы шихты в расчете на сухое вещество - диоксид кремния, затем слой шликера наносят на подложку из жаростойкого неметаллического материала, высушивают полученную заготовку при 40-80°С и послойно наносят шликер на поверхность защищаемого объекта до образования слоя защитного покрытия требуемой толщины, после чего подвергают заключительному обжигу в силитовой печи при 500-550°С. 2 н.п. ф-лы, 2 табл.

Состав композиции для получения сегнетоэлектрического материала титаната бария-стронция предназначен для получения сегнетоэлектрических материалов и может быть использован в области радиоэлектронной промышленности, например, в качестве конденсаторов малых линейных размеров. Шихта для получения сегнетоэлектрического материала состава Ba0,8Sr0,2TiO3 включает нитрат бария, нанокристаллический диоксид титана и нитрат калия, а также дополнительно содержит нитрат стронция при следующем соотношении компонентов, мол. %: Ba(NO3)2 10-16; Sr(NO3)2 2,5-4,0; TiO2 12,5-20; ΚNO3 60-75. Исходные порошки смешивают, отжигают при температуре 600°С и промывают дистиллированной водой, удаляя нитрат калия. Полученные ультра- и наноразмерные порошки сегнетоэлектрического материала позволят уменьшить линейные размеры элементов микроэлектроники при сохранении их электрофизических характеристик. Кроме того, достигается снижение энергоемкости процесса получения сегнетоэлектрического материала за счет понижения температуры, сокращения времени синтеза, отсутствия дополнительных этапов промежуточного и финального помола. 1 ил., 1 табл.
Изобретение относится к композициям, предназначенным для получения отражающего неорганического покрытия, обладающего высокой устойчивостью к импульсному световому излучению, и может быть использовано в лазерной технике для применения в космонавтике, спектрофотометрических и гелиотехнических приборах, работающих в видимой и ИК областях спектра света

Изобретение относится к композициям на основе титаната висмута, предназначенным для получения сегнетоэлектрических материалов, и может быть использовано в микроэлектронике для усовершенствования перепрограммируемых запоминающих устройств, а также в акусто- и оптоэлектронике для модернизации радиотехнических конденсаторов, пьезоэлектрических преобразователей и фильтров, гидроакустических устройств, пироэлектрических приемников инфракрасного излучения

Изобретение относится к композициям, предназначенным для получения сегнетоэлектрических материалов на основе титаната бария, и может быть использовано в радиоэлектронной промышленности

 


Наверх