Патенты автора Исаева Вера Ильинична (RU)

Изобретение относится к технологии приготовления металлорганических каркасов (МОК), в частности, к получению металлорганического каркаса на основе циркония и бензол-1,4-дикарбоновой кислоты в условиях СВЧ активации, а именно, к получению металлорганического каркаса на основе циркония формулы UiO-66, образованного кластерами Zr6O4(OH)4, соединенных бензол-1,4-дикарбоксилатными линкерами, который может найти применение в качестве носителей для получения различных катализаторов в различных химических процессах, в качестве адсорбентов для улавливания диоксида углерода и токсичных газов из атмосферы, а также для адсорбции или фотокаталитического разложения различных веществ и частиц в среде воды. Представлен способ получения металлорганического каркаса на основе циркония формулы UiO-66 путем смешения соли циркония и бензол-1,4-дикарбоновой кислоты в присутствии растворителя с последующим нагреванием полученной реакционной смеси под воздействием СВЧ излучения при температуре 120°С, характеризующийся тем, что в качестве соли циркония используют оксихлорид циркония формулы ZrOCl2×8H2O, а в качестве растворителя используют ледяную уксусную кислоту, а нагрев реакционной смеси осуществляют под воздействием СВЧ излучения мощностью до 200 Вт и частотой 2,465 ГГц при атмосферном давлении. Изобретение обеспечивает повышение безопасности процесса получения металлорганического каркаса UiO-66, повышение выхода целевого продукта, а также снижение материальных затрат на проведение процесса и нагрузки на экологию. 1 ил., 1 табл., 2 пр.

Изобретение относится к технологии приготовления двумерных (2D) материалов, в частности к получению двумерных металл-органических каркасов (МОК) на основе металла и 2-метилимидазола в условиях СВЧ активации, а именно к получению двумерных металл-органических каркасов общей формулы ZIF-L(X), где X=Zn и/или Со, которые могут найти применение в качестве носителей для получения различных катализаторов в различных химических процессах, в качестве адсорбентов для газоразделения, улавливания диоксида углерода и токсичных газов из атмосферы, а также для адсорбции различных веществ и частиц из жидкой фазы. Представлен способ получения двумерных металл-органических каркасов общей формулы ZIF-L(X), где X=Zn и/или Со, заключающийся в том, что соль - ацетат металла общей формулы Х(Ас)2×2Н2O, где Х=Zn или Со, либо смесь двух солей, взятых в мольном соотношении 1:1, обрабатывают 2-метилимидазолом в среде растворителя - воды с последующим нагреванием полученной реакционной смеси под воздействием СВЧ излучения мощностью до 200 Вт и частотой 2465 МГц при атмосферном давлении, температуре 100°С и мольном соотношении соли и 2-метилимидазола 1:7,5. Технический результат заключается в упрощении способа получения двумерного каркасного материала формулы ZIF-L(X), повышении выхода целевого продукта и безопасности процесса, а также расширении ассортимента получаемых продуктов. 3 ил., 1 табл., 4 пр.

Изобретение относится к способу получения пористых координационных полимеров структуры MOF-177. Способ включает смешение соли - ацетата цинка и 1,3,5-трифенилбензол-p,p',p''-трикарбоновой кислоты, взятых в массовом соотношении 2,5-4,5:1, в присутствии растворителя, в количестве, достаточном для полного растворения реагентов, последующее нагреванием полученной реакционной смеси под воздействием СВЧ-излучения и выделение целевого продукта. В качестве растворителя используют смесь воды и полярного органического сорастворителя, взятых при массовом соотношении 1:1-4 соответственно. Процесс проводят при атмосферном давлении и нагреве реакционной смеси до температуры 120-140°C под воздействием СВЧ-излучения мощностью до 200 Вт. Изобретение позволяет упростить технологию получения полимера MOF-177, повысить производительность процесса при сохранении высокого выхода. 1 з.п. ф-лы, 1 табл., 5 пр.

Изобретение относится к технологии переработки газообразного углеводородного сырья, а именно к способу получения катализатора для гидрогенизационной конверсии диоксида углерода в жидкие углеводороды, который включает нанесение наночастиц металлического кобальта на поверхность пористого носителя, при этом носитель выполнен в виде металлорганической каркасной структуры MIL-53(Al), которую получают в ходе сверхвысокочастотного СВЧ-активированного синтеза при атмосферном давлении и температуре 125-130°C путем реакции взаимодействия AlCl3×6H2O и 1,4-бензолдикарбоновой кислоты в смешанном растворителе - смеси воды и диметилформамида, а наночастицы металлического кобальта размером 5-10 нм наносят на носитель методом пропитки по влагоемкости из водных растворов соли Со(СН3СОО)2⋅4H2O, при этом содержание наночастиц в катализаторе составляет 5-15% масс. Изобретение также относится к способу гидрогенизационной конверсии диоксида углерода в жидкие углеводороды. Технический результат заключается в частичной утилизации парникового газа - диоксида углерода и упрощении технологии процесса получения жидких углеводородов. 2 н.п. ф-лы, 1 табл., 2 ил., 5 пр.

Изобретение относится к двухстадийному способу получения пропионового альдегида, который является ценным полупродуктом органического синтеза. Способ включает стадию гидроформилирования этилена монооксидом углерода при повышенных температуре и давлении в присутствии катализатора - металлического родия на носителе. При этом перед стадией гидроформилирования предварительно осуществляют стадию гидрогенизации диоксида углерода в синтез-газ в присутствии катализатора, содержащего металлический кобальт на носителе в виде металлорганической каркасной структуры MIL-53(Al), полученной в ходе СВЧ активированного синтеза, и процесс получения пропионового альдегида проводят в проточном двухполочном реакторе при давлении 20-40 атм путем контактирования стационарного слоя катализатора, расположенного на верхней полке реактора и нагретого до температуры 500°C, с сырьевой смесью Н2 и СО2 при объемной скорости подачи газового сырья 500-1000 ч-1 с последующим смешением образовавшихся и нагретых до температуры 500-520°C реакционных газов, содержащих смесь СО-Н2-СО2, с холодным этиленом, подаваемым в межполочное пространство, и полученную газовую смесь при соотношении СО:Н2:С2Н4=1:(1÷2):1 подают на нижнюю полку реактора и подвергают контактированию при температуре 170-230°C с находящимся там катализатором гидроформилирования, представляющим собой металлический родий на носителе в виде металлорганической каркасной структуры MIL-53(Al), полученной в ходе автогенного гидротермального синтеза. Предлагаемый способ позволяет повысить селективность образования целевого продукта до 58,1%, а выход - до 20,1%, обеспечивая утилизацию парникового газа (СO2). 2 з.п. ф-лы, 2 ил., 1 табл., 8 пр.

Изобретение относится к тонкому и основному органическому синтезу и касается, в частности, способа двухстадийного получения пропионовой кислоты, которая находит применение как ценный полупродукт органического синтеза. Предложен двухстадийный непрерывный способ получения пропионовой кислоты, включающий стадию гидрогенизации диоксида углерода в синтез-газ в присутствии катализатора, содержащего металлический кобальт на носителе в виде металлорганической каркасной структуры MIL-53(Al), и стадию гидроксикарбонилирования этилена монооксидом углерода и водой в присутствии катализатора гидроксикарбонилирования, представляющего собой металлический родий на носителе в виде металлорганической каркасной структуры MIL-53(Al), и процесс проводят в проточном 2- полочном реакторе при давлении 40-80 атм путем контактирования стационарного слоя катализатора, расположенного на верхней полке реактора и нагретого до температуры 500°C, с сырьевой смесью Н2 и CO2 при объемной скорости подачи газового сырья 500-1000 ч-1 последующим смешением образовавшихся и нагретых до температуры 500-520°C акционных газов, содержащих смесь СО-H2-CO-H2O, с холодным этиленом, подаваемым в межполочное пространство, и полученную газовую смесь при соотношении СО:H2O:С2Н4, близком к 1:1:1, подают на нижнюю полку реактора и подвергают контактированию при температуре 140-200°C с находящимся там катализатором гидроксикарбонилирования. Процесс проводят при объемном соотношении Н2:CO2 в газовом сырье, равном 0,8-1,2, и используют катализаторы с размером металлических частиц 2-4 нм при содержании кобальта 10 мас.% и родия 5-15 мас.%. Техническим результатом изобретения является повышение выхода пропионовой кислоты до 47,5% и селективности ее образования при одновременном упрощении технологии процесса и снижении энергетических затрат. Предлагаемый способ обеспечивает утилизацию парникового газа (CO2). 2 з.п. ф-лы, 3 ил., 1 табл., 7 пр.

Изобретение относится к способу получения пористых координационных полимеров общей формулы MIL-53(X), где Х=Al или Cr. Способ включает смешение хлорида металла общей формулы XCl3×6H2O, где X имеет вышеуказанные значения, и 1,4-бензолдикарбоновой кислоты в присутствии растворителя, нагревание полученной реакционной смеси под воздействием СВЧ-излучения и выделение целевого продукта. В качестве растворителя используют смесь воды и полярного органического растворителя, взятых при массовом соотношении 1:1-4 соответственно. Процесс проводят при атмосферном давлении и температуре 120-130°C, а нагрев реакционной смеси осуществляют под воздействием СВЧ-излучения мощностью до 200 Вт. Техническим результатом изобретения является упрощение процесса, сокращение времени реакции при сохранении высокого выхода целевого продукта, а также улучшение качества кристаллической фазы. 1 з.п. ф-лы, 3 ил., 1 табл., 5 пр.

Изобретение относится к способу получения пористого координационного полимера NH2-MIL-101(Al) и к пористому координационному полимеру NH2-MIL-101(Al), полученному таким способом. Способ заключается в смешении соли алюминия формулы AlCl3×6H2O и органической кислоты 2-амино-1,4-бензолдикарбоновой кислоты в присутствии растворителя - смеси воды и полярного органического растворителя, взятых при массовом соотношении 1:1-5, соответственно. Затем полученную реакционную смесь нагревают при атмосферном давлении и температуре 120-130°С под воздействием СВЧ-излучения мощностью до 200 Ватт. В качестве полярного органического растворителя используют растворитель с температурой кипения выше 130°С, способного эффективно нагреваться в условиях СВЧ-излучения, например диметилсульфоксид, N,N′-диметилформамид. Технический результат - существенное повышение выхода целевого продукта, сокращение времени проведения процесса, отказ от применения автогенного давления и получение чистого продукта с преобладанием в его пористой структуре мезопор, имеющих повышенную степень кристалличности и фазовой чистоты, который может найти применение при создании нового класса носителей для катализаторов тонкого органического синтеза, а также в области газоразделения. 2 н. и 1 з.п. ф-лы, 3 ил., 1 табл., 6 пр.
Изобретение относится к материалам, предназначенным для осуществления адсорбционных процессов, в частности к адсорбентам для улавливания, концентрирования и хранения диоксида углерода Адсорбент изготовлен на основе мезопористой металлорганической каркасной структуры, выбранной из структур IRMOF-3, MOF-177, HKUST-1 (MOF-199), ZIF-8, MIL-100, MOF-200, MOF-210, MIL-101 или MIL-53. Выбранную основу обрабатывают водным раствором соли цинка и подвергают нагреванию в атмосфере инертного газа до формирования модифицирующей добавки в виде оксида цинка. Содержание модифицирующей добавки в структуре составляет 1-1,5 г ZnO на 1 г металлорганической каркасной структуры. Техническим результатом изобретения является создание модифицированного адсорбента, который в 2 раза по емкости по CO2 при атмосферном давлении превосходит известные адсорбенты. 9 пр.

Изобретение относится к катализатору для гидроаминирования жидких ацетиленовых углеводородов амином. Данный катализатор содержит наночастицы благородного металла на мезопористом носителе. При этом в качестве благородного металла катализатор содержит наночастицы серебра со средним размером 2-5 нм, а в качестве носителя - мезопористый металлорганический координационный полимер NH2-MIL-101(Al) с удельной поверхностью свыше 2000 м2/г и объемом мезопор не менее 1,9 см3/г при следующем соотношении компонентов, мас.%: Ag - 0,5-5, носитель - остальное. Предлагаемый катализатор является высокоактивным и позволяет повысить селективность процесса гидроаминирования до 100%, сократить время реакции гидроаминирования и, как следствие, повысить производительность процесса при сохранении высокой степени конверсии ацетиленовых углеводородов. Настоящее изобретение также относится к способу гидроаминирования с использованием такого катализатора. 2 н. и 1 з.п. ф-лы, 1 табл., 5 пр.

Группа изобретений относится к области каталитических технологий переработки углеводородного сырья и касается, в частности, катализатора и способа гидроаминирования жидких ацетиленовых углеводородов аминами в ценные продукты - имины, которые при дальнейшем гидролизе приводят к образованию соответствующих кетонов. Предложен катализатор, содержащий наночастицы благородного металла на носителе - мезопористом цеолитоподобном силикате МСМ-41. В качестве благородного металла катализатор содержит наночастицы металлического серебра с размером 2-5 нм, при следующем соотношении компонентов, мас.%: Ag - 0,5-10, носитель - остальное. Предложен также способ гидроаминирования жидких ацетиленовых углеводородов амином при температуре 100-150°C в присутствии серебросодержащего катализатора Ag/MCM-41, мольном соотношении амин:ацетиленовый углеводород, равном 1-1,5:1, и мольном соотношении ацетиленовый углеводород:серебро в катализаторе, равном 210-1000:1. В качестве амина используют анилин или пиперидин. Техническим результатом предлагаемого изобретения является сокращение времени реакции гидроаминирования в результате использования предлагаемого Ag/MCM-41 катализатора и, как следствие, повышение производительности процесса при сохранении высокой степени конверсии ацетиленовых углеводородов. 2 н. и 1 з.п. ф-лы, 1 табл., 5 пр.

Изобретение относится к области каталитических технологий переработки углеводородного сырья и касается, в частности, катализатора для гидроаминирования ацетиленовых углеводородов амином и способа гидроаминирования. Катализатор содержит наночастицы металлического золота на носителе - мезопористом цеолитоподобном силикате МСМ-41, модифицированном ионной жидкостью, при следующем соотношении компонентов, мас.%: Au - 1-5, ионная жидкость - 5-20, носитель - остальное. В качестве ионной жидкости он содержит 1-н-бутил-3-метилимидазолий гексафторфосфат или 1-н-бутил-3-метилимидазолий тетрафторборат. Предложен также способ гидроаминирования жидких ацетиленовых углеводородов амином с использованием предлагаемого катализатора и проведением процесса в условиях СВЧ-нагрева катализатора в среде органического растворителя при температуре 100-150°C и мольном соотношении амин : ацетиленовый углеводород, равном 1-2:1. В качестве органического растворителя используют толуол, стирол, диметилформамид или вышеуказанную ионную жидкость. В качестве амина используют анилин или морфолин. Технический результат - сокращение времени реакции гидроаминирования в результате использования предлагаемого трехкомпонентного катализатора и, как следствие, повышение производительности процесса при сохранении высокой степени конверсии ацетиленовых углеводородов. Кроме этого, во всех примерах по настоящему изобретению вместо термического нагрева реактора используется СВЧ-излучение с очень низкой мощностью (до 10 Вт), что приводит к снижению энергетических затрат. 2 н. и 4 з.п. ф-лы, 2 табл., 11 пр.

Изобретение относится к области каталитических технологий переработки углеводородного сырья и касается, в частности, способа конверсии ацетиленовых углеводородов в ценные продукты, такие как имины и кетоны. Предложен способ гидроаминирования жидких ацетиленовых углеводородов амином в присутствии катализатора в условиях СВЧ нагрева с мощностью в диапазоне 1-10 ватт реакционной массы при температуре 110-150°C в среде полярного органического растворителя. Катализатор содержит наноразмерные частицы металлического золота на носителе - двуокиси титана или мезопористом цеолитоподобном силикате МСМ-41. Суммарное содержание золота 1-5 мас.%. В качестве полярного органического растворителя используют, например, диметилформамид или ионную жидкость, преимущественно 1-н-бутил-3-метилимидазолий гексафторфосфат, или 1-н-бутил-3-метилимидазолий тетрафторборат. В качестве амина используют, например, анилин или пиперидин. В качестве ацетиленовых углеводородов используют линейные углеводороды, например, гексин, гептин, октин, и ароматические ацетиленовые углеводороды, например, фенилацетилен. Техническим результатом предлагаемого изобретения является сокращение времени реакции гидроаминирования в результате использования полярных растворителей и СВЧ нагрева реакционной массы и, как следствие, повышение производительности процесса при сохранении высокой степени конверсии ацетиленовых углеводородов. 6 з.п. ф-лы, 1 табл., 7 пр.

Изобретение относится к каталитическим технологиям очистки этиленовых мономеров для полимеризации. Предложен эффективный катализатор, содержащий наноразмерные частицы золота с размером 2-5 нм. В качестве носителя используют мезопористый цеолитоподный силикат МСМ-41 с удельной поверхностью 1000-1200 м2/г и объемом мезопор 1,2-2,0 см3/г. Суммарное содержание золота в катализаторе составляет 0,5-5 мас.%. Предложен способ селективной очистки этиленовых мономеров от примесей ацетиленовых углеводородов в присутствии этого катализатора. Процесс очистки ведут путем контактирования исходной смеси этиленовых мономеров с ароматическим амином при температуре 100-135°C и мольном соотношении ароматический амин: ацетиленовый углеводород 1-2:1. Процесс очистки этилена от ацетилена проводят в статическом реакторе, либо в проточном реакторе с неподвижным слоем катализатора. В случае использования стирола в качестве этиленового мономера, процесс очистки от фенилацетилена ведут в жидкой фазе. Преимуществом предлагаемого способа является проведение реакции при более низких температурах 100-135°C, отсутствие необходимости использования водорода, а также увеличение производительности процесса. 2 н. и 5 з.п. ф-лы, 1 ил., 9 пр.
Изобретение относится к адсорбентам, которые можно использовать в процессах адсорбции из газовой или жидкой фазы для выделения изомеров алкил(арил)ароматических соединений, включая изомеры терфенила
Изобретение относится к области очистки газов
Изобретение относится к катализаторам очистки газов двигателей внутреннего сгорания, в частности к адсорбентам для удаления углеводородов из выхлопных газов автомобиля в период холодного запуска двигателя
Изобретение относится к оксидным катализаторам каталитических процессов окислительного дегидрирования углеводородов, в частности к гетерогенным катализаторам окисления
Изобретение относится к способу получения этилена путем проведения каталитического процесса окислительного дегидрирования в присутствии гетерогенного оксидного катализатора, содержащего оксиды переходных металлов, или их смесь, выбранных из группы, содержащей Мо, V, Те, Nb, обладающего емкостью в хранении кислорода не ниже 0,3-0,5 ммоль/г, при котором в проточный реактор в периодическом режиме через слой гетерогенного оксидного катализатора при давлении 1 атм., температуре 380-500°С вначале подают с объемной скоростью 500-30000 ч-1 чистый этан, затем кратковременно импульсно в течение менее 20 с реактор продувают газом-носителем (азот, аргон), после чего подают воздух
Изобретение относится к области катализа и органической химии, в частности к методам получения высокоактивных каталитических систем для реакций окислительного дегидрирования углеводородов, в частности этана

 


Наверх