Патенты автора Гусаров Виктор Владимирович (RU)

Изобретение относится к способам определения теплопроводности неоднородных твердых материалов, а именно оксидной корки, образующейся на поверхности расплава активной зоны ядерного реактора и взаимодействующих с ним материалов, и применимо в ядерной энергетике, конкретно при анализе безопасности атомных электростанций (АЭС) с ядерными реакторами водо-водяного типа (ВВЭР) в условиях тяжелой аварии. В экспериментальной установке формируют ванну прототипного расплава с поверхностной коркой и с прототипной газовой средой над коркой, стабилизируют тепловой режим, измеряют температуру наружной поверхности корки. Определяют тепловой поток, отводимый излучением от наружной поверхности корки, определяют температуру внутренней поверхности корки как температуру ликвидус расплава. Далее сливают расплав, измеряют толщину корки и вычисляют теплопроводность корки по зависимости для стационарной теплопроводности через плоскую пластину. Технический результат - повышение точности определения теплопроводности корки. 1 з.п. ф-лы, 1 ил.

Изобретение относится к технологии получения нанопорошков феррита (ортоферрита) висмута в струйных микрореакторах. Способ получения нанопорошков феррита висмута заключается в подаче исходных компонентов - смеси растворов солей висмута и железа в соотношении компонентов, отвечающих стехиометрии BiFeO3, и раствора щелочи с молярной объемной концентрацией от 1 до 4 моль/л, отвечающей условиям соосаждения компонентов в струйный микрореактор 1, при этом получение нанопорошков феррита висмута ведут в две стадии: на первой стадии в струйном микрореакторе 1 осуществляют соосаждение гидроксидов висмута и железа путем подачи растворов исходных компонентов в виде тонких струй диаметром от 100 до 800 мкм, сталкивающихся в вертикальной плоскости, при температуре в диапазоне от 20 до 30°С и давлении, близком к атмосферному, с последующим отделением частиц от cуспензии и их промывки от остатков щелочи, на второй стадии проводят дегидратацию соосажденных гидроксидов висмута и железа при температуре в интервале от 420 до 600°С и атмосферном давлении, скорость струй задают в интервале от 10 до 25 м/с, а угол между струями устанавливают от 70 до 120°, при этом отделение продуктов реакции и их промывку после первой стадии осуществляют при помощи вакуум-фильтра 3 барабанного типа, имеющего зоны всасывания суспензии, многократной промывки слоя осадка при помощи форсунок 4, просушки атмосферным либо подогретым воздухом, отделения слоя осадка при помощи ножа, а для осуществления второй стадии используют барабанную печь 5, установленную под небольшим наклоном к горизонту, вращающуюся на кольцевых бандажах, опирающихся на ролики 6, оснащенную одним или несколькими инфракрасными нагревателями 7, и сборник готового продукта 8. Изобретение позволяет упростить технологию синтеза наночастиц феррита (ортоферрита) висмута путем снижения температуры и давления, необходимых для проведения первой стадии синтеза; увеличить выход и селективность процесса, в отсутствие примесных фаз в продукте; сократить затраты энергии и обеспечить непрерывность процесса с возможностью его осуществления в промышленном масштабе; сократить капитальные затраты на оборудование; обеспечить оптимальные условия для быстропротекающих реакций за счет поддержания стабильных и эффективных гидродинамических условий контактирования реагентов, подвода реагентов в стехиометрическом соотношении, быстрого отвода продуктов реакции и дегидратации при оптимальных температурах. 6 ил.

Способ может быть использован в ядерной энергетике при анализе безопасности атомных электростанций с ядерными реакторами водо-водяного типа при тяжелой аварии с нарушением охлаждения и плавлением активной зоны. Согласно заявленному способу в экспериментальной установке формируют оксидно-металлическую ванну расплава прототипного кориума с поверхностным положением металлического расплава и с коркой кориума на поверхности металлического расплава. Образование корки обеспечивают охлаждением поверхностной зоны ванны расплава. Далее расплав окисляют подачей окислителя в полость, расположенную над коркой. Стабилизируют тепловой режим, измеряют температуру наружной поверхности корки, определяют тепловой поток, отводимый излучением от наружной поверхности корки. Расплав кристаллизуют и измеряют толщину корки. Вычисляют температуру внутренней поверхности корки как температуру монотектики оксидно-металлической системы ванны расплава. Теплопроводность корки вычисляют по зависимости для стационарной теплопроводности через плоскую пластину. Технический результат - повышение точности определения теплопроводности корки кориума при расчетном моделировании процессов, определяющих возможность удержания расплава в корпусе реактора. 1 ил.

Изобретение относится к системе безопасности атомных электростанций (АЭС) с ядерными реакторами водо-водяного типа (ВВЭР), а именно к устройствам для локализации и охлаждения расплавленного кориума при аварийном выходе его за пределы корпуса реактора при тяжелых авариях с нарушением охлаждения и плавлением активной зоны. Устройство содержит размещенную в бетонной шахте реактора предловушку с жертвенным и защитным материалами, примыкающее к бетонной шахте помещение растекания с расположенными на его полу последовательно сверху вниз слоями жертвенного, стального и защитного материалов, канал с проплавляемой заглушкой, выполненный в бетонной стенке шахты и сообщающий предловушку с помещением растекания. Заглушка размещена со стороны предловушки и представляет собой часть стенки бетонной шахты, толщина указанной части определена с учетом времени перемещения расплава кориума в предловушку и с учетом скорости взаимодействия расплава кориума и жертвенного материала с указанной частью стенки бетонной шахты. Жертвенный материал изготовлен по бетонной технологии с минимальным содержанием воды. Техническим результатом является обеспечение возможности монтажа на модернизируемых АЭС с реакторами водо-водяного типа без изменения конструкции реакторной установки. 1 з.п. ф-лы, 1 ил.

Изобретение относится к изготовлению ядерного топлива с ультрамелкодисперсной структурой на основе диоксида урана для тепловыделяющих элементов (твэлов) ядерных реакторов. После подготовки порошков диоксида урана, диоксида кремния и оксида лантаноида готовят шихту из исходных порошков диоксида урана и диоксида кремния или диоксида урана, оксида лантаноида и диоксида кремния в соотношениях, отвечающих составам вблизи границы области жидкофазного расслаивания со стороны диоксида кремния. Шихту расплавляют в инертной либо восстановительной атмосфере при температуре, обеспечивающей однофазность образующегося расплава. Расплав охлаждают в закалочном режиме с образованием в результате однородной ультрамелкодисперсной стеклокерамической структуры с размером кристаллитов 100±30 нм. Из полученной ультрамелкодисперсной стеклокерамической структуры выщелачивают аморфную матрицу, продукт выщелачивания смешивают с металлическим порошком, а полученную смесь подвергают прессованию и температурной обработке с расплавлением металлической части. Изобретение позволяет получить ядерное топливо с улучшенными прочностными характеристиками, с повышенной устойчивостью к распуханию, с повышенной способностью к локализации газообразных продуктов деления. 2 н. и 22 з.п. ф-лы, 5 ил., 3 пр.

Изобретение относится к технологии получения нанопорошков феррита кобальта в микромасштабном реакторе. Способ заключается в подаче исходных компонентов - смеси растворов солей кобальта и железа в соотношении компонентов, отвечающих стехиометрии CoFe2O4, и раствора щелочи в соотношении с растворами солей, обеспечивающем кислотность среды в диапазоне от 7 до 8, отвечающей условиям соосаждения компонентов, при этом растворы исходных компонентов подают в виде тонких струй диаметром от 50 до 1000 мкм со скоростью от 1,5 до 20 м/с, сталкивающихся в вертикальной плоскости под углом от 30° до 160°, при температуре в диапазоне от 20°С до 30°С, и давлении, близком к атмосферному, причем соотношение расходов исходных компонентов задают таким образом, что при столкновении струй образуется жидкостная пелена, в которой происходит смешивание и контакт растворов исходных компонентов. Микрореактор для осуществления способа содержит корпус 1 и патрубки 2 с соплами 3 для подачи исходных компонентов 10 и патрубок 4 для отвода продуктов, корпус 1 микрореактора имеет цилиндрическую форму с коническим днищем 5, крышку 6, патрубки 2 с соплами 3 для подачи исходных компонентов 10 выполнены с возможностью тонкой регулировки направления струи, в крышке 6 соосно корпусу 1 установлен патрубок 9 для подачи продувочного газа, а в днище 5 установлен выпускной патрубок 4 для отвода продувочного газа и продуктов реакции, причем площадь выпускного патрубка 4 в 20-50 раз превышает суммарную площадь всех патрубков для подачи исходных компонентов. В цилиндрической части корпуса могут быть установлены два или более патрубков 17 для подачи раствора поверхностно-активных веществ в виде тонких струй диаметром от 10 до 1000 мкм, направленных на жидкостную пелену контактирующих растворов исходных компонентов. Изобретение позволяет снизить температуру и давление, необходимые для проведения синтеза оксидных наноразмерных частиц феррита кобальта, снизить затраты энергии и обеспечить непрерывность процесса с возможностью его осуществления в промышленном масштабе, сократить стоимость оборудования, увеличить выход и селективность процесса, обеспечить оптимальные условия для быстропротекающих реакций за счет поддержания стабильных и эффективных гидродинамических условий контактирования реагентов и быстрого отвода продуктов реакции. 2 н. и 1 з.п. ф-лы, 5 ил., 2 пр.

Группа изобретений относится к составам материалов для атомной энергетики, в частности к жертвенным материалам. Оксидный материал ловушки расплава активной зоны ядерного реактора, включающий Al2O3, Fe2O3 и/или Fe3O4, первую целевую добавку в виде Gd2O3 или Eu2O3, или Sm2O3 и вторую целевую добавку в виде BaCeO3 при следующем соотношении компонентов, мас.%: Fe2O3 и/или Fe3O4( 46-80), Al2O3 (16-50), первая целевая добавка (0,1-2,5), BaCeO3 (3,0-12,5). Оксидный материал ловушки расплава активной зоны ядерного реактора, включающий Al2O3, Fe2O3 и/или Fe3O4, и целевую добавку в виде BaCe1-xLnxO3-δ, где Ln представляет собой один из следующих элементов: Gd, Eu, Sm, где 0,1≤x≤0,3, а δ=x/2 при следующем соотношении компонентов, мас.%: Fe2O3 и/или Fe3O4 (46-80), Al2O3 (16-50), BaCe1-xLnxO3-δ (3-15). Группа изобретений позволяет повысить надежность локализации расплава активной зоны аварийного ядерного реактора. 2 н.п. ф-лы, 2 табл.

Изобретение относится к составам материалов для атомной энергетики, в частности к однофазному керамическому оксидному жертвенному материалу, включающему Fe2O3, Al2O3, SrO. Материал включает в себя указанные простые оксиды в виде однофазного соединения - твердого раствора на основе гексаферрита стронция и гексаалюмината стронция SrFe12-xAlxO19 при 4.7≤х≤11, состоящего из гексаферрита стронция и гексаалюмината стронция, масс. %: гексаферрит стронция - 70-12, гексаалюминат стронция - 30-88. Изобретение позволяет повысить надежность локализации расплава активной зоны аварийного ядерного реактора в УЛР. 1 ил., 2 табл.

Изобретение относится к составам оксидных жертвенных материалов для устройств улавливания разрушенной активной зоны ядерного реактора и средствам предотвращения пожаров и накопления взрывчатых газов. В заявленном изобретении предусмотрено использование шихты, включающей гематитовую смесь, содержащую спеченные гранулы из оксида железа, оксида алюминия и оксида кремния в качестве крупнодисперсной составляющей, и мелкодисперсный оксид алюминия, и алюмокальциевую смесь, которая содержит моно- и диалюминат кальция, в соотношении, масс.%: гематитовая смесь - 70-85, алюмокальциевая смесь - 15-30. При этом весовые отношения оксида железа и оксида алюминия в гематитовой смеси в пределах от 4,5:1,0 до 1,0:1,0, а весовые отношения моно- и диалюмината кальция в алюмокальциевой смеси в пределах от 1:4 до 1:5. Оксидный материал включает вышеописанную шихту и воду в соотношении, масс.%: оксидная смесь - 100%, вода - 8-13,5% (сверх 100%). Техническим результатом является повышение надежности и взрывобезопасности ядерного реактора путем создания шихты и оксидного материала с меньшим содержанием воды. 2 н.п. ф-лы, 3 табл.

Изобретение относится к фиксирующим оксидным материалам, конкретно - к теплостойким материалам для применения в устройствах локализации расплава активной зоны ядерных реакторов. Заявленный фиксирующий оксидный материал содержит высокодисперсный оксид алюминия и алюмокальциевую смесь из моно- и диалюмината кальция в соотношении, масс.%: высокодисперсный оксид алюминия - 25-84, алюмокальциевая смесь - 16-75, при этом весовое отношение моно- и диалюмината кальция в алюмокальциевой смеси в пределах от 1:4 до 1:5. При этом в заявленном фиксирующем материале нет компонентов, способных вступать в реакцию с расплавом активной зоны с выделением летучих соединений. Процессы выхода воды из разработанного фиксирующего материала значительно разделены по времени с выходом кислорода из пластин жертвенного материала. Компоненты фиксирующего материала химически не взаимодействуют с компонентами расплава активной зоны. Техническим результатом является повышение взрывобезопасности ядерного реактора путем создания фиксирующего материала для сцепления пластин и гранул жертвенного материала устройства локализации расплава активной зоны ядерного реактора с меньшим содержанием воды и более высокой температурой плавления. 1 ил., 3 табл.

Изобретение относится к устройствам для улавливания разрушенной активной зоны ядерного реактора, к средствам предотвращения пожаров и накопления взрывчатых газов. Шихта включает корундовую смесь из крупно- и мелкодисперсного оксида алюминия и алюмокальциевую смесь из моно- и диалюмината кальция в соотношении, мас.%: корундовая смесь - 55-85, алюмокальциевая смесь - 15-45, при этом весовые отношения крупно- и мелкодисперсного оксида алюминия в смеси в пределах от 99:1 до 10:1, а весовые отношения моно- и диалюмината кальция в смеси в пределах от 1:4 до 1:5. Защитный оксидный материал выполнен из указанной шихты и воды. Технический результат изобретения получен новым фазовым и дисперсным составом шихты и защитного оксидного материала, а также выбором оптимальных соотношений компонентов шихты. Количество воды в оксидном материале снижено в сравнении с прототипом (5,5-8,0% против 18%), а температура плавления повышена. Применение шихты и материала для защиты днища и стенок ловушки обеспечит ее большую надежность, эффективность, взрывобезопасность, что повышает безопасность ядерного реактора в целом. 2 н.п. ф-лы, 3 табл.

Изобретение относится к области атомной энергетики. Устройство включает корпус в виде сосуда, днище которого углублено к центру с уклоном 10-20 градусов, а толщина днища не менее чем на 30% больше толщины боковой стенки корпуса. В корпусе расположены брикеты материала-разбавителя урансодержащего оксидного кориума, связанные цементным раствором и размещенные в стальных блоках. Масса материала-разбавителя определена условием обеспечения инверсии расплавов урансодержащей и стальной составляющих кориума и ограничения теплового потока, подводимого к корпусу, допустимым уровнем. Масса стальных элементов блоков определена условием уменьшения температуры стальной составляющей кориума до допустимого уровня. Блоки размещены в несколько горизонтальных слоев, днище нижнего блока по форме совпадает с днищем корпуса, расположенные над ним блоки имеют центральное отверстие. Узлы крепления блоков к корпусу и между собой размещены в вертикальных прорезях блоков, причем прорези и, частично, блоки заполнены бетоном. Технический результат - повышение эффективности устройства, упрощение его сборки. 2 з.п. ф-лы, 2 ил.

Изобретение относится к устройствам удаления водорода из герметичных помещений атомных электростанций

 


Наверх