Патенты автора Улин Игорь Всеволодович (RU)

Изобретение относится к области гальванотехники и может быть использовано при получении покрытий с высокой микротвердостью для изделий авиационной промышленности, машиностроения и судостроения. Электролит для нанесения нанокристаллического композиционного покрытия никель-фосфор-вольфрам на детали из стали и медных сплавов содержит, г/л: сульфат никеля семиводный 40-45, гипофосфит натрия 5,0-5,5, вольфрамат натрия 115-130, цитрат натрия 280-290, хлорид аммония 26-27, вода - остальное. Способ включает обезжиривание и химическую обработку поверхности детали, электрохимическое осаждение покрытия производят в мембранном электролизере при рН 8-9, температуре 65±5°С, плотности тока 4-7 А/дм2 из указанного электролита и заключительную термическую обработку. Обеспечивается получение нанокристаллических композиционных покрытий на основе системы «никель-фосфор-вольфрам» с высокой микротвердостью, равной микротвердости твердых хромовых покрытий на деталях из низкоуглеродистой и нержавеющей стали и медных сплавах. 2 н. и 1 з.п. ф-лы, 2 пр.
Изобретение относится к области гальванотехники и может быть использовано для нанесения защитного покрытия на детали, работающие под нагрузкой в агрессивных средах, для повышения надежности изделий и устройств и для увеличения срока их эксплуатации. Электролит содержит сернокислый семиводный никель 40-45 г/л, цитрат натрия 250-290 г/л, вольфрамат натрия 115-130 г/л, хлорид аммония 26-27 г/л и воду - остальное. Способ включает подготовку электролита и электроосаждение покрытия на металлическую основу при рН=7,5-8,5, температуре электролита 60-70°С и плотности тока осаждения 5-10 А/дм2. Технический результат: создание универсального электролита и способа нанесения защитного покрытия на детали из низкоуглеродистой стали, нержавеющей стали, меди и медных сплавов. 2 н. и 2 з.п. ф-лы, 4 пр.

Изобретение относится к области гальванотехники и может быть использовано в машиностроении, приборостроении, химической и других отраслях промышленности. Способ включает микродуговое оксидирование в течение 70-90 минут в электролите, содержащем водный раствор борной кислоты и гидроксида натрия с концентрацией 20-30 г/л и 4-6 г/л соответственно, при этом микродуговое оксидирование проводят при плотности постоянного тока 5-10 А/дм2 и температуре электролита 25 или 30 °С. Техническим результатом является получение качественных коррозионностойких покрытий на основе кристаллического оксида алюминия Al2O3 без промежуточной стадии формирования аморфного оксида на основе Al2O3 с одновременным снижением технологической опасности процесса, временных и энергозатрат. 1 табл., 2 пр.
Изобретение относится к области нефтехимии, а именно к носителям катализаторов, которые могут быть использованы для процессов паровой конверсии. Описан носитель катализатора, включающий металлическую основу и нанесенную на него многослойную композицию, в которой по крайней мере один слой является пористым. Многослойная композиция состоит из трех слоев, при этом внутренний слой, улучшающий адгезию, содержит никель, промежуточный слой содержит интерметаллиды системы «никель-алюминий», внешний пористый слой содержит каталитически активные соединения на основе одного или нескольких элементов Периодической системы, а именно Ni, Се, La, Са, Al. Технический результат заключается в получении носителя, обладающего высокой прочностью сцепления слоев, высокой планарностью и незначительным допуском к толщине слоя, с величиной адгезии нанесенных слоев с металлической основой не менее 60 МПа и стабильностью структуры носителя до температуры 1000 °C. 2 з.п. ф-лы, 2 пр.
Изобретение относится к области материаловедения, в том числе к созданию защитных керамоматричных покрытий на поверхности стали, обладающих высокой коррозионной стойкостью в агрессивных средах при температурах контактного взаимодействия 400-600°С за счет изменения состава и структуры их поверхностных слоев. Изобретение также может использоваться в химической промышленности. Способ заключается в том, что на стальную поверхность методом сверхзвукового холодного газодинамического напыления наносится порошок чистого алюминия фракцией 20-60 мкм. В качестве рабочего газа используется воздух. На образовавшийся алюминиевый первый слой методом сверхзвукового холодного газодинамического напыления наносят композиционный порошок, состоящий на 20% из корунда фракцией 50-60 мкм и на 80% из порошка алюминия фракцией 20-60 мкм, армированного свыше 50% наноразмерными частицами корунда фракцией до 100 нм. В качестве рабочего газа используется воздух. При напылении образуются скопления нанокорунда, которые заполняют поры покрытия. Далее образовавшийся алюминиевый упрочненный второй слой, имеющий пористость не более 5% от объема, подвергается микродуговому оксидированию в силикатно-щелочном электролите следующего состава: силикат натрия - 9 г/л, гидроксид калия - 2 г/л, остальное - вода. Продолжительность микродугового оксидирования составляет 1-1,5 часа, образуется внешний керамический оксидный МДО-слой внутрь упрочненного алюминиевого второго слоя с наночастицами корунда с открытой пористостью не более 7%. Данный способ позволяет уменьшить количество операций при формировании керамоматричного покрытия. Поверхность полученного керамоматричного покрытия имеет микротвердость 15-20 ГПа, адгезия покрытия к металлической основе не менее 50 МПа. При взаимодействии поверхности с агрессивной средой при температурах 400-600°С внешний МДО-слой и упрочненный алюминиевый второй слой с наночастицами корунда обеспечивают защиту керамоматричного покрытия от разрушения и создает необходимые условия для формирования интерметаллидного слоя Al-Fe с пористостью не более 2% от объема на всю толщину первого алюминиевого подслоя, вследствие активно протекающей диффузии на границе «подложка-покрытие». При этом адгезия покрытия к стали ухудшается не более чем на 5%. Интерметаллидный первый слой Al-Fe защищает сталь от взаимодействия с агрессивной средой, в случае ее частичного проникновения в поры износостойкого внешнего и второго слоя керамоматричного покрытия. 4 з.п. ф-лы, 2 пр.
Изобретение относится к технологическим процессам, а именно к способам осуществления химических процессов, в частности к области общего и специального катализа, также к созданию новых материалов с особыми свойствами для осуществления этих процессов. Изобретение может быть использовано для изготовления термохимических каталитических реакторов паровой конверсии топлива и химической регенерации тепла, химических источников тока, топливных элементов. В способе изготовления нанокаталитического материала получение каталитически активного слоя на металлическом носителе производят путем нанесения порошковой композиции с помощью высокоэнергетических процессов гетерофазного переноса с использованием двух или более автономно работающих устройств на металлический носитель. Носитель имеет сквозные отверстия, которые выполнены методом просечки или иным способом перфорирования. Площадь сквозных отверстий металлического носителя составляет от 0,1 до 0,7 см2, толщина каталитически активного слоя - от 100 до 200 мкм. Техническим результатом изобретения является получение нанокаталитического материала, отличающегося более высокой эффективностью процесса, обусловленной эффективным массообменном в зоне реакции и наличием сквозной пористости, более высокой удельной поверхностью материала за счет полидисперсной структуры и наличия микропористости, более высокой прочностью сцепления каталитического слоя с металлическим носителем. 3 з.п. ф-лы, 2 табл., 2 пр.

Изобретение относится к способам создания пористых материалов для альтернативных источников энергии и может быть использовано в производстве химических водоактивируемых источников тока, систем очистки и опреснения воды, комплексов промышленной экологии. Техническим результатом изобретения является получение высокоэффективного пористого материала на металлическом носителе с высокой удельной поверхностью и пористостью. Технический результат достигается за счет того, что в способе создания пористого материала на металлическом электропроводящем носителе с целью увеличения удельной поверхности и пористости формируют каталитически активный слой на металлическом носителе при помощи высокоэнергетических процессов газофазного переноса, а именно путем микроплазменного или холодного газодинамического напыления композиционной порошковой смеси, состоящей из металлического порошка-основы и порообразователя, при этом полученное покрытие в результате напыления подвергают термообработке при температуре разложения порообразователя на твердофазную и парогазовую составляющие, в результате чего газообразный компонент удаляется через покрытие, образуя сквозные поры, а твердофазный компонент осаждается на стенках пор, существенно увеличивая интегральную удельную поверхность покрытия. 7 з.п. ф-лы, 3 табл.
Изобретение относится к прецизионной металлургии износостойких сплавов для получения функциональных покрытий, работающих в экстремальных условиях эксплуатации
Изобретение относится к области общего и специального катализа, в частности к способам получения катализаторов окисления оксида углерода и углеводородов, и может найти свое применение в системах снижения токсичности отходящих газов различных технологических процессов, где выбрасываемый в атмосферу газ содержит вредные органические вещества и оксид углерода

Изобретение относится к технологии изготовления электрода для химических источников тока и может быть использовано в электротехническом производстве и судостроении

Изобретение относится к способам нанесения электропроводящих наноструктурированных покрытий с высокой электропроводностью и износостойкостью

 


Наверх