Патенты автора Исрафилов Данис Ирекович (RU)

Изобретения относятся к способам и устройствам для осуществления тлеющего разряда и могут найти применение при обработке поверхности и нанесении покрытий на поверхности различных изделий в вакууме, в машиностроении для поверхностной термообработки, напыления и упрочнения, а также для получения излучения, например для накачки лазеров. Технический результат - обеспечение горения тлеющего разряда при давлении от 10 Торр и ниже. В способе осуществления тлеющего разряда, включающем зажигание тлеющего разряда между анодом и катодом в газоразрядной камере с поперечным к направлению электрического поля потоком рабочего газа, при зажигании тлеющего разряда устанавливают давление в газоразрядной камере от P=10 Торр и ниже, создают разные концентрации частиц газа в различных областях межэлектродного пространства, за счет организации сверхзвукового потока рабочего газа в заданной области межэлектродного зазора в поперечном к электрическому полю направлении при скорости потока газа более V=300 м/с. Устройство для осуществления тлеющего разряда содержит откачную вакуумную систему, подключенную к газоразрядной камере с размещенными в ней анодом, катодом, патрубками для подачи и откачки рабочего газа, устройством для формирования потока рабочего газа. Устройство содержит конфузор, а устройство для формирования потока рабочего газа выполнено как сверхзвуковое сопло, являющееся диффузором, причем конфузор и диффузор установлены в межэлектродном пространстве в газоразрядной камере соосно против друг друга таким образом, что ось конфузора и диффузора находится в поперечном к оси анода и катода направлении на заданном расстоянии относительно анода и катода, также имеется патрубок для откачки остаточного газа из газоразрядной камеры. 2 н.п. ф-лы, 3 ил.

Изобретение относится к области получения пучков ионов и может быть использовано для решения научных и прикладных задач, в частности использоваться в ускорителях или масс-спектрометрии и для обработки поверхностей различных изделий в вакууме. Технический результат - обеспечение получения потока ионов при давлении от 10-2 Торр и ниже, а также упрощение способа и конструкции устройства. В способе работы плазменного источника ионов в газоразрядную камеру предварительно вводят рабочий газ через газоввод, создают магнитное поле с вектором индукции преимущественно осевого направления относительно анода и катода, подают напряжение на анод и на полый катод, зажигают тлеющий разряд, образуют ионы за счет бомбардировки атомов рабочего газа электронами, достигается тем, что при зажигании тлеющего разряда устанавливают давление в газоразрядной камере ниже Р=10-2 Торр, создают разные концентрации частиц газа в различных областях межэлектродного пространства за счет организации сверхзвукового потока рабочего газа в заданной области межэлектродного зазора в поперечном к электрическому полю направлении при скорости потока газа более V=300 м/с. Устройство плазменного источника ионов содержит откачную вакуумную систему, подключенную к газоразрядной камере, с размещенными в ней газовводом для рабочего газа, полым катодом, анодом, и магнитную систему, предназначенную для создания в разрядной камере магнитного поля с вектором индукции осевого направления относительно анода и катода, дополнительно содержит конфузор, а газоввод выполнен как сверхзвуковое сопло, являющееся диффузором, причем конфузор и диффузор установлены в межэлектродном пространстве в газоразрядной камере соосно против друг друга таким образом, что ось конфузора и диффузора находится в поперечном к оси анода и катода направлении на заданном расстоянии относительно анода и катода. 2 н.п. ф-лы. 3 ил.

Изобретения относятся к способу и устройству для нанесения покрытий в вакууме. Напускают в вакуумную камеру рабочий газа. В качестве источника осаждаемых частиц используют катод с мишенью. При зажигании тлеющего разряда устанавливают давление в газоразрядной камере ниже Р=10-2 Торр, создают разные концентрации частиц газа в различных областях межэлектродного пространства путем создания сверхзвукового потока рабочего газа со скоростью более V=300 м/с в заданной области межэлектродного зазора в поперечном к электрическому полю направлении. Устройство нанесения покрытий содержит газоразрядную камеру и размещенные в ней катод с мишенью и анод, газоввод для напуска рабочего газа в виде сверхзвукового сопла, являющегося диффузором, конфузор, причем конфузор и диффузор установлены в межэлектродном пространстве в газоразрядной камере соосно друг против друга с обеспечением расположения оси конфузора и диффузора в направлении, поперечном к оси анода и катода, на заданном расстоянии относительно анода и катода. Изобретение позволяет получить высокую скорость нанесения покрытий при низких давлениях, что повышает чистоту процесса, а также упрощает конструкцию устройства. 2 н.п. ф-лы, 3 ил.

Изобретение относится к получению углеродных наноструктур и позволяет получить углеродные частицы в виде порошка, что значительно расширяет их применение, упростить способ и устройство получения углеродных наноструктур, а также повысить коэффициент полезного действия. В способе получения углеродных наноструктур, включающем зажигание в вакуумной камере тлеющего разряда при постоянном электрическом токе, в прикатодную область вакуумной камеры в канал разряда аксиально и тангенциально подают углеводородный газ, а обработку углеводородного газа осуществляют при определенных параметрах тлеющего разряда. Во втором варианте способа в прикатодную область вакуумной камеры в канал разряда аксиально подают смесь инертного газа с частицами порошка углерода и тангенциально подают инертный газ. В устройстве для получения углеродных наноструктур, содержащем вакуумную камеру с размещенными в ней электродами, блок питания постоянного тока, подключенный к аноду и катоду, вакуумная камера имеет первые тангенциальные входы в прикатодную область для подачи углеводородного газа и второй аксиальный вход со стороны катода для подачи углеводородного газа, электроды размещены в вакуумной камере на расстоянии R=20÷100 мм друг от друга. Во втором варианте устройства вакуумная камера имеет первые тангенциальные входы в прикатодную область для подачи инертного газа, и второй аксиальный вход со стороны катода для подачи смеси инертного газа с частицами порошка углерода. 4 н. и 2 з.п. ф-лы, 4 ил.

Предлагаемое техническое решение относится к области производства зеркал, а именно зеркал с обогревом, используемым, например, в качестве наружных зеркал заднего обзора транспортного средства. Технический результат предлагаемого зеркала заднего вида транспортного средства заключается в повышении качества изображения в зеркале, в устранении затемнения изображения в зеркале, в сокращении потребления электроэнергии, в упрощении конструкции зеркала. Решаемая техническая задача в зеркале заднего вида с обогревом для транспортного средства, содержащем отражательный элемент из металлической пленки, выполненной путем плазменного напыления на подложку зеркала, выполненную с зеркально гладкой с обеих сторон поверхностью, на отражательном элементе сформированы контактные площадки, к которым прикреплены соответствующие выводы для подсоединения к источнику электропитания, достигается тем, что отражательный элемент из металлической пленки путем плазменного напыления на лицевую сторону подложки сформирован с огибанием двух противоположных боковых краев подложки и на соответствующих боковых краях ее обратной стороны, где сформированы контактные площадки, а подложка зеркала выполнена из токонепроводящего материала. В качестве токонепроводящего материала подложки может быть использован полимерный композит. 1 з.п. ф-лы, 2 ил.

Изобретение относится к машиностроению, более конкретно к устройствам, генерирующим плазму для нагрева и обработки поверхностей различных изделий, для обработки непроводящих материалов, и может найти применение в машиностроении для закалки, отжига, поверхностной обработки, напыления и упрочнения изделий

 


Наверх