Патенты автора Булушева Любовь Геннадьевна (RU)

Изобретение относится к области электроники и нанотехнологии, а именно к способу получения наноструктурированного материала для анодов щелочных металл-ионных аккумуляторов, в частности для литий- и натрий-ионных аккумуляторов. Изобретение позволяет получать наноструктурированные пористые сульфиды молибдена или ванадия, или их гибриды (VS2/графеновый материал или МоS2/графеновый материал), характеризующиеся высокой емкостью для литий-ионных и натрий-ионных аккумуляторов, которые также могут найти применение, например, в катализе, в сенсорных устройствах и других областях техники. Предложенный способ позволяет упростить получение этих материалов за счет уменьшения стадий, снижения температуры и сокращения времени термического разложения до секунд, путем разложения термоударом аэрогелей исходных веществ или их смеси с оксидом графита при 400-700°С в течение 10-20 сек в атмосфере аргона. Повышение емкостных характеристик литий и натрий-ионных аккумуляторов за счет использования наноструктурированного материала, полученного заявленным способом, является техническим результатом изобретения. 3 з.п. ф-лы, 5 пр., 9 ил.

Изобретение относится к технологии химического осаждения из газовой фазы CVD и может быть использовано для синтеза углеродных наноматериалов, таких как пленки графена, многослойного графена, углеродных нанотрубок. Система химического осаждения из газовой фазы для роста графена содержит трубчатый кварцевый реактор, трубчатую печь, передвигающуюся вдоль оси реактора с помощью подложки, подложкодержатель, систему напуска и регулировки газов, блок регулятора температуры и систему вакуумирования. Кварцевый реактор и трубчатая печь установлены на выдвижной платформе, оба конца реактора соединены с буферной емкостью, причем один конец реактора соединен с буферной емкостью последовательно через соединительный разъем и через отсек устройства принудительной циркуляции газового потока. Соединительный разъем снабжен подложкодержателем со встроенной термопарой. В частных случаях осуществления изобретения соединительный разъем установлен стационарно, а один из концов реактора выполнен в виде капилляра. Обеспечивается реализация замкнутого контура с принудительной циркуляцией газа, что позволяет уменьшить расход газов, требуемых для роста графена и других углеродных наноматериалов, а также сократить время работы системы наполнения и роторного насоса, а также упростить технологический процесс осаждения. 2 з.п. ф-лы, 1 ил., 2 пр.

Изобретение относится к области нанотехнологий и молекулярной биологии. Предложен способ детекции проникновения углеродных нанотрубок (УНТ) в биологическую ткань, геном клеток которой содержит промотор гена теплового шока, сшитый с кодирующей областью дрожжевого транскрипционного фактора Gal4, и генетическую репортерную конструкцию UAS-GFP. Вывод о наличии или отсутствии проникновения отдельных УНТ в ткань образца делают на основе распределения флуоресценции в клетках образца. Изобретение обеспечивает эффективную детекцию проникновения УНТ в биологическую ткань. 3 ил., 3 пр.

Изобретение может быть использовано при изготовлении носителей катализаторов, сорбентов, электрохимических конденсаторов и литий-ионных аккумуляторов. Взаимодействуют при 700-900 °C соль кальция, например, тартрат кальция или тартрат кальция, допированный переходным металлом, являющаяся предшественником темплата, и жидкие или газообразные углеродсодержащие соединения или их смеси в качестве источника углерода. Полученный продукт обрабатывают соляной кислотой. Концентрация допированного переходного металла не более 1 ат.%. Получают однородный мезопористый углеродный материал, характеризующийся удельной поверхностью 850-930 м2/г, объемом пор 2,9-3,3 см3/г и средним диаметром пор 10-30 нм. 2 н. и 2 з.п. ф-лы, 3 ил., 9 пр.
Изобретение относится к термостойким материалам фосфатного твердения, обладающих высокой электропроводностью, которые могут быть использованы в области электромагнитных, авиационных и космических технологий, а также в строительной отрасли. Изобретения позволяет снизить удельное объемное сопротивление композиционного материала при сохранении высоких показателей по прочности и термостойкости. Электропроводящий термостойкий фосфатный композиционный материал содержит алюмофосфатное связующее, наполнитель- смесь оксида и нитрида алюминия и модифицирующую добавку - углеродные нанотрубки (УНТ), при соотношении компонентов композиционного материала, масс. %: алюмофосфатная связка - 14-16, УНТ - 0,5-2, наполнитель (Аl2О3-AlN) - остальное. 1 табл.

Изобретение относится к области электроники и нанотехнологии и касается способа получения композиционного материала, содержащего слоистые материалы на основе графита и сульфида молибдена. В качестве исходных соединений используют терморасширенный графит или окисленный графит и тиомолибдат, при этом тиомолибдат разлагают в смеси с терморасширенным или окисленным графитом при нагревании или подвергают разложению в растворе с кислой средой. Образующийся продукт, содержащий терморасширенный или окисленный графит и предшественник сульфида молибдена, промывают и нагревают в вакууме при 350-1000°С с получением композита, содержащим на поверхности стопок графитовых слоев сульфид молибдена состава MoxSy, где x=1÷3, y=2÷4. При этом терморасширенный графит или окисленный графит предварительно диспергируют, а предшественник сульфида молибдена представляет собой трисульфид молибдена. Изобретение обеспечивает создание композиционного материала, содержащего слоистые материалы на основе графита и сульфида молибдена с возможностью варьировать размер, морфологию и фазовый состав наночастиц сульфида молибдена на графитовой поверхности. 2 з.п. ф-лы, 4 ил., 5 пр.

Изобретение относится к области неорганической химии, а именно к способу выделения одностенных углеродных нанотруб (ОУНТ) из продуктов синтеза

Изобретение относится к области электроники и измерительной техники, в частности для изготовления датчиков для анализа газовой среды для определения аммиака

Изобретение относится к области нанотехнологии, в частности к способу обработки поверхности электронно-полевых катодов, изготовленных из углеродных наноматериалов, которые могут использоваться для производства дисплеев, осветительных элементов, радиочастотных усилителей, в рентгеновских установках, ионизаторов газовых сред, измерителей вакуума

Изобретение относится к области электроники и нанотехнологии, в частности к способу создания материала для высокоэффективных автоэмиссионных катодов на основе углеродных нанотруб, которые могут найти применение в дисплеях, панельных лампах, ионизаторах, рентгеновских источниках и других областях техники

Изобретение относится к технологии функциональных наноматериалов, а именно к химической технологии получения гибридных композиционных наноматериалов, состоящих из углеродных нанотрубок и осажденных на них квантовых точек, и оптической наноэлектронике, включая оптонаноэлектронику и нанофотонику

Изобретение относится к технологии получения слоистых наноматериалов, к нанотехнологии, в частности получения углеродных слоев или нанослоев графена на непроводящих подложках, и может быть использовано в массовой технологии производства приборов, базирующейся на методах и материалах традиционной планарной технологии изготовления полупроводниковых приборов

Изобретение относится к нанотехнологии

Изобретение относится к области нанотехнологии, а именно к способу создания углеродных нанотруб (УНТ)

Изобретение относится к области исследования материалов в нанотехнологии и, в частности, к способу измерения диаметра углеродных нанотруб (УНТ) в диапазоне от одного до нескольких десятков нанометров

Изобретение относится к микроструктурным технологиям, а именно к нанотехнологии, в частности к способу получения волокнистых углеродных наноматериалов, состоящих из углеродных нанотрубок, методом химического осаждения из газовой фазы

 


Наверх