Патенты автора Макаров Николай Владимирович (RU)

Изобретение относится к способам передачи потенциальной и кинетической энергии жидкой или газообразной среде, повышения эффективности преобразования механической энергии вращения рабочего колеса лопатных турбомашин в потенциальную и кинетическую энергию перемещаемой ими жидкой или газообразной среды и может использоваться в лопастных турбомашинах радиального и осевого типов. Часть жидкости, подаваемой через входной коллектор объемных лопаток, ускоряют в их внутренней полости и с повышенной кинетической энергией подают через конфузорные каналы по касательной к тыльной поверхности объемных лопаток, в том числе и в области их выходной кромки, соответствующей схождению рабочей и тыльной поверхностей, в межлопаточные каналы рабочего колеса, смешивая ее с жидкой или газообразной средой, подаваемой в межлопаточные каналы рабочего колеса, увеличивая за счет эжекции кинетическую энергию жидкой или газообразной среды на тыльной поверхности объемных лопаток в межлопаточных каналах и на выходе из них в нагнетательный коллектор, что устраняет отрывное вихреобразование на тыльной поверхности объемных лопаток, совмещая точку схода отрыва потока (отрыва потока) с тыльной поверхности лопатки с ее выходной кромкой, являющейся задней критической точкой, уменьшая «кромочный след» вихревой дорожки Кармана, являющейся основным источником потерь энергии, а также увеличивает циркуляцию жидкой или газообразной среды вокруг объемного профиля лопаток за счет увеличения скорости на ее тыльной поверхности, способствуя росту давления. Технический результат - повышение давления лопастных турбомашин малой удельной быстроходности. 2 н. и 4 з.п. ф-лы, 7 ил.

Изобретение относится к области машиностроения и может быть использовано для автоматического балансирования роторов турбомашин. Способ автоматической многовекторной балансировки рабочих колёс турбомашин включает в себя перемещение балансировочных грузов в плоскости, перпендикулярной оси вращения, под действием неуравновешенных масс, создающих центробежные силы, причём уравновешивающую массу перемещают как в плоскости вращения рабочего колеса, так и в плоскостях, параллельных оси вращения, независимо друг от друга и поворачивают относительно трёх осей, одна из которых является осью вращения рабочего колеса, а две другие лежат в плоскости, перпендикулярной оси вращения, под действием радиальных и тангенциальных инерционных сил, обусловленных неуравновешенными массами до их полного уравновешивания. Устройство для автоматической многовекторной балансировки рабочих колёс турбомашин включает в себя уравновешивающую массу, закреплённую в плоскости вращающейся втулки рабочего колеса турбомашины, при этом уравновешивающая масса состоит из металлических шаров, размещённых в полом тороиде, и свободно закреплена упругодемпфирующими связями симметрично по оси вала рабочего колеса турбомашины, а роль упругодемпфирующих связей выполняют пружины и демпферы, расположенные в плоскости вращения рабочего колеса турбомашины. Конструктивное расположение пружин и демпферов по образующей цилиндра, симметричной оси вращения рабочего колеса, и жёстко связанных с полым тороидом также обеспечивает автоматическую многовекторную балансировку рабочих колёс турбомашины. 2 н. и 1 з.п. ф-лы, 3 ил.

Изобретение относится к бесконтактной магнитометрической диагностике в области наружного контроля технических параметров подземного трубопровода. Изобретение направлено на повышение достоверности и точности диагностического контроля технических параметров изоляционного покрытия на локальном участке подземного трубопровода. Согласно предложенному способу с использованием электрического кабеля 3, имеющего длину не менее 50 м, подключают генератор к диагностируемому участку трубопровода, для чего один конец кабеля подсоединяют к заглушке трубопровода 1, затем вытягивают на всю длину соосно трубопроводу к предварительно установленной вешке 4 и с помощью провода соединяют генератор с кабелем. На противоположном конце участка трубопровода с помощью электрического кабеля 5, имеющего длину не менее 50 м, подключают электрод для отвода обратного тока, для чего один конец кабеля подсоединяют к заглушке 2, вытягивают на всю длину соосно трубопроводу к вешке 6 и подсоединяют провод электрода к кабелю. В результате формируется замкнутая электрическая цепь, позволяющая провести диагностирование короткого по длине локального участка подземного трубопровода и получить достоверные результаты о техническом состоянии изоляционного покрытия. 2 ил., 1 табл.

Предложенная группа изобретений относится к способам классификации микро-наночастиц техногенных минеральных отходов (ТМО) и устройствам для их реализации, т.е. к классификаторам. Способ гидровихревой классификации микро-наночастиц техногенных минеральных отходов (ТМО) по медианным размерам и их дисперсии включает формирование псевдокипящего слоя микро-наночастиц ТМО за счёт сжатого воздуха, классификацию их путём гидровихревой коагуляции с закрученными каплями жидкости за счёт давления жидкости подаваемой в гидровихревые форсунки из аэратора для управления медианным размером и его дисперсией микро-наночастиц ТМО, поступающих в бункер коллектора классификации, подачу коагулированных микро-наночастиц ТМО в коллектор классификации с бункером сбора микро-наночастиц ТМО. Осуществляют регулировку давления и расхода подаваемой в гидровихревые форсунки жидкости путём изменения гидравлического сопротивления аэратора, установленной в аэраторе диафрагмой из двух дисков с отверстиями в шахматном порядке. Капли жидкости закручивают в гидровихревой форсунке с переменной угловой и поступательной скоростями, период колебания которых не более времени прохождения микро-наночастиц ТМО псевдокипящего слоя области воздействия на них капель жидкости из гидровихревых форсунок. Способ осуществляют с помощью гидровихревого классификатора, состоящего из устройства для формирования псевдокипящего слоя микро-наночастиц ТМО, загрузочного питателя, смесительной камеры с пористой газораспределительной перегородкой, патрубка для подачи сжатого воздуха, хонейкомба для выравнивания скорости движения микро-наночастиц ТМО и аэратора для подачи жидкости под давлением в гидровихревые форсунки, закручивающие капли жидкости вокруг вектора скорости их поступательного движения. В аэраторе установлена диафрагма, выполненная из двух дисков с отверстиями в шахматном порядке, регулирующая давление и расход подаваемой в гидровихревые форсунки жидкости с заданной амплитудой и частотой колебания. Технический результат - повышение эффективности классификации, а также возможность получения микро-наночастиц ТМО с требуемыми медианными диаметрами и дисперсией.2 н.п. ф-лы, 6 ил.

Изобретение относится к центробежным насосам, перекачивающим жидкую среду. Способ повышения энергии, сообщаемой жидкой среде центробежными насосами, включает формирование циркуляционного течения жидкой среды вокруг объемных лопастей в межлопастных каналах рабочего колеса, создающего рост давления на рабочей поверхности лопастей по отношению к их тыльной поверхности. Часть жидкой среды, подаваемой в межлопастные каналы, направляют из них по входным каналам с рабочей поверхности лопастей в цилиндрические вихревые камеры. Камеры расположены по всей длине лопасти, в них закручивают жидкую среду в вихревое интенсивное вращательное движение и далее перемещают по выходным каналам на поверхности лопастей. Эту среду смешивают со средой, перемещаемой по межлопастным каналам по всему пространству, и направляют смешанный поток в нагнетательный патрубок. Дополнительно часть жидкой среды с повышенной потенциальной и кинетической энергией из нагнетательной части корпуса насоса со стороны несущего диска под давлением направляют через конфузоры в каждую цилиндрическую вихревую камеру объемных лопастей, закручивая ее на входе в вихревую камеру в направлении вращения рабочего колеса, передают ее энергию вращения части жидкой среды, поступающей в вихревую камеру из межлопастного канала, после чего эту дополнительную часть жидкой среды за счет разрежения выпускают из выходного диффузорного канала со стороны покрывного диска, тем самым усиливая циркуляцию жидкой среды в цилиндрических вихревых камерах, создавая дополнительный прирост давления на рабочей поверхности лопасти по отношению к тыльной ее поверхности. Изобретение направлено на повышение эффективности способа передачи внутренней энергии жидкой среде, повышение экономичности преобразования механической энергии вращения рабочего колеса во внутреннюю энергию перемещаемой им жидкой среды, снижение металлоемкости и уменьшение габаритов центробежного насоса, снижение уровня вибрации и шума в области рабочих режимов за счет устранения вихреобразования жидкой среды на выходе из рабочего колеса в спиральном отводе и нагнетательном патрубке. 2 н. и 1 з.п. ф-лы, 7 ил.

Изобретение относится к способам охлаждения газа в аппаратах воздушного охлаждения и устройствам для их реализации. Техническим результатом является повышение эффективности охлаждения газа в оребренных пучках труб теплообменников воздушного охлаждения вышеуказанных аппаратах воздушного охлаждения. Путем закручивания охлаждающего воздуха в каналах, образованных спиралевидными элементами лепестков, в форме которых выполнено оребрение пучков труб теплообменников воздушного охлаждения в радиальном направлении по отношению к трубам, что приводит к существенному увеличению времени контакта охлаждающего воздуха с пучком оребренных труб, а также снижению статического давления охлаждающего воздуха за счет его интенсивной закрутки, что способствует снижению его температуры и как результат - эффективному снижению энтальпии охлаждающего газа за счет повышения теплоотдачи от него к охлаждающему воздуху. Способ воздушного охлаждения газа, включающий подачу газа в трубы многорядного одноходового трубного пучка и подачу охлаждающего воздуха в межтрубное пространство, с формированием зигзагообразного характера движения воздуха с интенсивной турбулентностью за счет наружного оребрения трубного пучка, содержащего элементы оребрения, размещенные по окружности на равном расстоянии друг от друга, образованные каждый вложенными друг в друга желобами, продольно размещенными на трубном пучке, скрепленными с последним и между собой средними частями оснований, и выполненные на боковых образующих желобов с поперечно развернутыми в одном или противоположном по отношению к смежным лепесткам, расположенным продольными рядами, боковые образующие смежных желобов расположены в каждом элементе на расстоянии одна от другой, не превышающем ширину лепестков, выполненных по всей высоте боковых образующих и расположенных в смежных рядах с взаимным смещением, при этом дополнительно к зигзагообразному поступательному движению охлаждающий воздух направляют по каналам, образованным спиралевидными элементами лепестков, и закрутки в устойчивое вращательное движение относительно осей, радиальных по отношению к трубам. Наружное оребрение теплообменной трубы, содержащее элементы оребрения в форме пространственной спирали Архимеда, с уменьшением диаметра спирали по мере приближения к трубе размещенные по окружности на равном расстоянии друг от друга. 2 н. и 2 з.п. ф-лы, 3 ил.

Изобретение относится к области теплотехники и может быть использовано в аппаратах воздушного охлаждения (АВО). В аппарате воздушного охлаждения, состоящем из блока теплообменников, вентилятора с приводом и опор, между которыми установлены рамы с сеткой и фильтрующим полотном, на внутренней стороне сетки закреплены оси, на которых установлены завесы-клапаны из воздухонепроницаемого материала, причем оси закреплены вертикально на внутренней стороне сетки. Технический результат - стабилизация давления и потока струи охлаждающего воздуха по всему периметру рабочей конструкции, снижение потерь на дросселирование воздуха (газа) в системе, а также повышение эффективности теплообмена. 3 ил.

Изобретение относится к способу гидровихревого кинематического пылеподавления и устройству для его реализации, применяемым для распыления жидкости. Способ включает подачу жидкости под давлением в полость гидровихревой кинематической форсунки, разделение ее на два равных по объему потока, раздельную подачу равных объемов жидкости в ступени двухступенчатого завихрителя с взаимно противоположным направлением закрутки относительно оси полости, закручивание разделенных объемов жидкости на первой и второй ступенях завихрителя в устойчивое вихревое движение с взаимно противоположным направлением векторов угловой скорости их вращения. Далее дробление завихренных потоков, с превращением в мелкодисперсный поток жидкости, за счет энергии кинетических моментов вращательного движения противоположно направленных вихревых потоков жидкости при их столкновении, направление с поступательной скоростью мелкодисперсного потока из завихрителя, через кольцевую коническую камеру сопла на выход из гидровихревой кинематической форсунки. Причем капли мелкодисперсного потока жидкости на выходе из кольцевой конической камеры сопла закручивают вокруг их вектора поступательной скорости, сообщая момент количества движения. Технический результат заключается в снижении аэродинамического энергетического барьера в процессе контакта вращающихся капель жидкости с частицами пыли, повышении эффективности коагуляции и эффективности пылеулавливания и пылеподавления гидрофобных частиц пыли с медианным диаметром менее 5·10-6 м, что ведет к снижению взрывоопасности и способствует снижению заболеваний дыхательных путей. 2 н. и 1 з.п. ф-лы, 4 ил.

Изобретение относится к экотехнологии, главным образом к горной промышленности, и может быть использовано для проветривания карьеров и для повышения производительности установок для очистки воздуха от пыли, увеличения объема очищаемого пространства и в устройствах для их реализации. Технический результат заключается в эффективной очистке выдаваемого из рабочей зоны воздуха путем достижения при заданных габаритах установки, максимально возможной площади входного коллектора узла подвода запыленного воздуха, а также использования эжекции вращающейся по периметру радиального входа узла подвода струи воздуха, создающей вокруг установки эффект «торнадо» за счет диффузии завихренности. Способ включает в себя всасывание воздуха, окружающего установку, через узел подвода запыленного воздуха, подачу его в циклонную камеру с пылесборниками, закручивание и очищение в ней воздуха от пыли и направление очищенного воздуха в вентиляционную трубу. При этом запыленный воздух всасывают и одновременно закручивают вокруг оси узла подвода по всему периметру его радиального входа, ускоряют закручивание запыленного воздуха по мере приближения его к оси узла подвода, поворачивают закрученный запыленный воздух из радиального направления в вертикальное по оси узла подвода, направляют в циклонную камеру с пылесборником, в вентилятор, преобразующий механическую энергию в потенциальную и кинетическую энергию поступательного и вращательного движения воздуха, и далее часть воздуха поступает в вентиляционную трубу, а часть направляют с большой скоростью поступательно-вращательного движения на вход в узел подвода по кольцевому щелевому конфузорному каналу, образованному обечайками пылесборника циклонной камеры и радиальным входом узла подвода запыленного воздуха. 2 н.п. ф-лы, 3 ил.

Изобретение относится к способам повышения аэротермодинамической эффективности аппаратов воздушного охлаждения (АВО) и устройствам для их реализации, то есть к АВО, применяемым для охлаждения природного газа компрессорных станций магистральных газопроводов и может использоваться в них. Сущность предлагаемого изобретения заключается в преобразовании остаточной циркуляции охлаждающего воздуха в диффузоре в статическое давление за счет изменения вектора циркуляции охлаждающего воздуха в периферийной части диффузора на противоположное по отношению к направлению вращения лопаток рабочего колеса. В процессе движения двух осесимметричных потоков охлаждающего воздуха: одного - в центральной части по оси диффузора, остаточная циркуляция которого совпадает с направлением вращения рабочего колеса, и второго, представляющего собой периферийное кольцевое течение потока воздуха с циркуляцией, направленной против вращения лопаток рабочего колеса по винтовой линии в направлении к теплообменным секциям, происходит смешение указанных потоков за счет дисперсии завихренности, и как результат - взаимное уменьшение циркуляций смешенного потока охлаждающего воздуха с возрастанием его статического давления за вычетом потерь на трение. При равенстве моментов количества движения по величине и противоположности по направлению у центрально и периферийного потоков охлаждающего воздуха достигается нулевая циркуляция смешенного потока в области теплообменных секций. Указанное способствует достижению максимально возможной равномерности и согласованности поступления охлаждающего воздуха на теплообменные секции, существенно повышая аэротермодинамическую эффективность АВО. 2 н. и 4 з.п. ф-лы, 3 ил.

Изобретение относится к способу повышения аэродинамической эффективности аппаратов воздушного охлаждения (АВО) и устройству для его реализации, то есть к АВО, применяемым для охлаждения природного газа компрессорных станций магистральных газопроводов, и может использоваться в них, способствуя существенному увеличению их аэродинамической эффективности. Способ повышения аэродинамической эффективности аппарата воздушного охлаждения включает в себя подачу охлаждающего воздуха, контактирующего с поверхностью всасывания, на вход в коллектора поверхности всасывания за счет разрежения, создаваемого лопатками рабочих колес вентиляторов, преобразующих механическую энергию их вращения в потенциальную и кинетическую энергию движения охлаждающего воздуха через коллекторы поверхности всасывания в корпусы вентиляторов, диффузоры, и далее на теплообменные секции, образованные пучками оребренных труб с перемещаемым по ним охлаждаемым газом, энтальпия которого снижается в результате передачи тепла от газа воздуху. При этом скорость охлаждающего воздуха на входе в коллекторы поверхности всасывания равна его скорости на теплообменных секциях. Также представлен аппарат воздушного охлаждения, реализующий способ согласно изобретению. Изобретение позволяет повысить аэродинамическую эффективность АВО. 2 н.п. ф-лы, 3 ил.

Техническое решение относится к средствам автоматической локомотивной сигнализации для определения сигналов впереди стоящих светофоров, состояния стрелок и путевых устройств, указания расстояния между поездами. Устройство содержит аналоговый датчик магнитного поля, усилитель, аналоговый фильтр, АЦП, узел цифровой фильтрации, кольцевой буфер, цифровой анализатор сигналов и устройство управления. Причем датчик, усилитель, аналоговый фильтр, АЦП, узел цифровой фильтрации, кольцевой буфер, цифровой анализатор сигналов и устройство управления связаны между собой последовательно через сигнальные входы/выходы, первый выход устройства управления связан с управляющим входом узла цифровой фильтрации, а второй выход устройства управления связан с управляющим входом цифрового анализатора сигналов. Достигается повышение помехоустойчивости на фоне аддитивных помех и надежности АЛС в широком диапазоне амплитуд сигнала в независимости от фаз помех. 5 н. и 15 з.п. ф-лы, 13 ил.

Изобретение относится к системам связи. Технический результат изобретения заключается в повышении помехоустойчивости приемного устройства на фоне аддитивных помех, достижении высокой эксплуатационной надежности системы связи. Способ содержит следующие этапы: прием сигнала осуществляют при условии одновременной фиксации минимально допустимого уровня амплитуды полезного сигнала и максимально допустимого уровня амплитуды аддитивной помехи, затем вычисляют мгновенные значения амплитуды принятого сигнала на рабочей частоте, кодовый сигнал распознают по присутствию амплитудного пика на рабочей частоте. 3 з.п. ф-лы, 13 ил.

Изобретение относится к способам разделения, обогащения, классификаций нерудных и рудной материалов, в частности к способам разделения твердых материалов по крупности. Способ разделения твердых материалов по крупности включает расслоение материала, введение его в зону разделения, направление на материал воздушного потока, разделение его воздушным потоком по крупности, подачу выделенных фракций на боковую поверхность барабана, разделение на барабане и вывод разделенных фракций. Воздушный поток, направляемый на материал, предварительно закручивают в интенсивное вихревое движение, формируя слой устойчивых вихрей, присоединенных к зоне расслоения материала. Для увеличения времени витания материала воздушный поток, направляемый на материал, закручивают в вихревое движение по направлению вращения барабана. Технический результат - повышение качества разделения твердых материалов по крупности. 1 з.п. ф-лы, 2 ил., 2 табл.

Группа изобретений относится к устройствам создания подъемной силы в вязкой текучей среде. Способ создания подъемной силы на поверхности заключается в создании разности давлений, действующих на противоположные стороны поверхности за счет увеличения циркуляции вязкой текучей среды вокруг нее. На одной из сторон поверхности образуют область, ограниченную слоем частиц вязкой текучей среды, и поворачивают его в направлении поверхности. Производят отбор струи вязкой текучей среды из области с образованием струи среды, втекающей в область и ускоряемой в ней по мере обтекания ею поверхности, ограничивающей область для снижения в ней статического давления. Частицы в слое среды закручивают в интенсивное вихревое движение, формируют слой устойчивых присоединенных к поверхности вихрей. Втекающую в область пониженного давления и ускоряемую в ней струю среды закручивают в высокоэнергетический вихревой жгут. Устройство создания подъемной силы на поверхности содержит емкость, заполненную вязкой текучей средой, каналы, сообщающие указанную емкость с верхней поверхностью. Емкость с помощью конфузорного канала тангенциально соединена с вихреобразователем, выполненным в виде цилиндрической вихревой камеры, сообщающейся с помощью профилированных каналов с верхней поверхностью. Вихревая камера выполнена винтообразной формы с боковыми тангенциальными входами. Группа изобретений направлена на расширение арсенала технических средств. 2 н. и 1 з.п. ф-лы, 3 ил.

Изобретение относится к области вентиляторостроения, в частности к рабочим колесам центробежных вентиляторов с загнутыми вперед лопатками. Рабочее колесо содержит несущий и покрывной диски и установленные между ними загнутые вперед основные и дополнительные укороченные лопатки. Со стороны рабочей поверхности каждой из дополнительных укороченных лопаток с конфузорным зазором по отношению к ним установлены укороченные назад загнутые лопатки в форме цилиндрической перфорированной поверхности с радиусом кривизны меньшим радиуса кривизны дополнительных укороченных вперед загнутых лопаток и центрами кривизны, расположенными на окружности большего радиуса, чем радиус окружности расположения центров кривизны вперед загнутых основных и дополнительных укороченных лопаток. Изобретение направлено на повышение давления, развиваемого рабочим колесом центробежного вентилятора и его КПД за счет формирования на рабочей поверхности дополнительных укороченных вперед загнутых лопаток устойчивого вихреисточника, воздействующего на поток в межлопаточном канале рабочего колеса со стороны тыльной поверхности основных и дополнительных укороченных вперед загнутых лопаток . 1 з.п. ф-лы, 2 ил.

Изобретение относится к турбомашиностроению, в частности к радиальным вентиляторам, насосам, компрессорам с загнутыми назад лопатками рабочего колеса. Турбомашина содержит спиральный корпус, установленное в нем рабочее колесо, несущий и покрывной диски, расположенные между ними загнутые назад профильные лопатки (5). Каждая лопатка (5) снабжена установленным с конфузорным зазором (6) по отношению к ее рабочей поверхности (7) накрылком (8) с вогнутой рабочей и выпуклой торцевой поверхностями (9, 10) и имеющим вихревую камеру (11), сообщающуюся тангенциально с зазором (6), выпускные конфузорные каналы (12) на его поверхность (10) из камеры (11) и впускные конфузорные каналы (13) с тангенциальным входом в нее с поверхности (9) накрылка (8). В спиральном корпусе на несущем диске в вихревую камеру (11) каждого накрылка (8) выполнен тангенциальный входной конфузорный канал (14), а на покрывном диске из вихревой камеры (11) - тангенциальный выходной конфузорный канал (15). Изобретение направлено на повышение аэродинамической нагруженности радиально-вихревой турбомашины за счет увеличения кинетической энергии вращения потока в вихревой камере путем формирования высокоэнергетического «вихревого жгута» и, как результат, увеличения перепада давления между рабочей и тыльной поверхностями лопаток. 5 ил.

Изобретение относится к лопастным радиальным турбомашинам, перекачивающим жидкую или газообразную среды. Способ повышения энергии, сообщаемой среде лопастными турбомашинами, включает формирование циркуляционного течения среды вокруг объемных лопаток в межлопаточных каналах рабочего колеса, создающего прирост давления на рабочей поверхности 8 лопаток по отношению к тыльной их поверхности 9. Часть среды, подаваемой в межлопаточные каналы, направляют из них по входным каналам 12 с рабочей поверхности 8 лопаток в цилиндрические вихревые камеры 11. Камеры 11 расположены по всей длине лопатки, они закручивают среду в вихревое интенсивное вращательное движение и далее перемещают по выходным каналам 13 на поверхности 8, 9. Эту среду смешивают со средой, перемещаемой по межлопаточным каналам по всему пространству, и направляют смешенный поток в нагнетательный патрубок. Изобретение направлено на повышение эффективности способа передачи внутренней энергии среде, повышение экономичности преобразования механической энергии вращения рабочего колеса во внутреннюю энергию перемещаемой ими среды, снижение металлоемкости и уменьшение габаритов турбомашины и уровня шума в области рабочих режимов за счет устранения вихреобразования на выходе из рабочего колеса и входе в нагнетательный патрубок. 1 з.п. ф-лы, 3 ил.

Радиально-вихревая турбомашина содержит спиральный корпус, установленное в нем рабочее колесо с несущим, покрывным дисками и расположенными между ними лопатками. На рабочей и тыльной поверхностях лопаток, в области их заднего края, выполнены продольный и дополнительный выступы, образующие в области задней кромки лопатки кольцевую цилиндрическую вихревую камеру. Вихревая камера закреплена на несущем и покрывном дисках, имеет ось, параллельную задней кромке лопатки, тангенциальный входной канал со стороны рабочей поверхности лопатки и перфорированную поверхность цилиндрической обечайки. Цилиндрическая обечайка установлена с зазором таким образом, что касательная к ней по линии пересечения плоскости, проходящей через ось камеры и заднюю кромку лопатки, параллельна касательной к рабочей и тыльной поверхностям лопатки на ее задней кромке. В лопатку по всей ее длине встроены дополнительные цилиндрические камеры с тангенциальным входным каналом, причем оси цилиндрических камер расположены на средней поверхности лопатки, а перфорации выполнены выходящими на рабочую и тыльную поверхности лопатки. Изобретение позволяет повысить аэродинамическую нагруженность и кпд турбомашины. 3 ил.

МЕТЛА // 2525069
Изобретение относится к очистной технике коммунального хозяйства, а конкретно к метлам дворницким с прутьями, изготовленными из полимерных материалов. Метла содержит черенок, декоративный колпак с отверстием под черенок, одно средство крепления декоративного колпака с черенком, прутья, соединенные с одной стороны в пучок, имеющий посадочное место под черенок и выполненный с возможностью фиксации на черенке при помощи декоративного колпака. Прутья соединены с одной стороны в пучок пластической массой, посадочное место под черенок выполнено в пластической массе, которая является средством соединения декоративного колпака и пучка прутьев таким образом, что отверстие под черенок в декоративном колпаке и посадочное место под черенок образуют канал для установки черенка. Конструкция метлы обеспечивает простоту сборки. 13 з. п. ф-лы, 4 ил.

Изобретение относится к области вентиляторостроения, в частности к рабочим колесам центробежных вентиляторов. В рабочем колесе центробежного вентилятора, содержащем несущий и покрывной диски, установленные между ними загнутые назад профильные лопатки, каждая из которых имеет со стороны рабочей поверхности в области выходной части накрылок, установленный с конфузорным зазором по отношению к рабочей поверхности лопатки, имеющий вогнутую рабочую и выпуклую торцевую поверхности и вихревую камеру, сообщающуюся тангенциально с конфузорным зазором, на его выпуклую торцевую поверхность. Из вихревой камеры выполнены выпускные конфузорные каналы, причем с вогнутой рабочей поверхности накрылка в вихревую камеру выполнены впускные конфузорные каналы с тангенциальным входом в нее. Использование позволяет существенно увеличить, аэродинамическую нагруженность центробежного вентилятора. 1 з. п. ф-лы, 2 ил.

Изобретение относится к лопастным турбомашинам и касается способа передачи потенциальной и кинетической энергии жидкой или газообразной среде

Изобретение относится к устройствам охлаждения нити при формовании термопластичных материалов для изготовления мононитей ворса или фибры из полимерных материалов, например из полипропилена

Изобретение относится к области вентиляторостроения, в частности к центробежным вентиляторам для газообильных угольных шахт, обеспечивающим аэродинамическую изоляцию очистной выработки от выработанного пространства при комбинированном проветривании угольных шахт

Изобретение относится к области турбомашин, в частности к центробежным, насосам, компрессорам

Изобретение относится к устройствам и узлам для формования термопластичных материалов, а конкретно фибры из полипропилена, используемой в качестве добавки в бетон, асфальт, строительные плиты

Изобретение относится к очистной технике коммунального хозяйства, к устройствам и узлам для формования термопластичных материалов, а конкретно ворса, изготовленного из полимерных материалов, например из полипропилена, и применяемого в качестве прутьев метлы дворницкой, используемой для подметания улиц, дворов, садово-парковых территорий и других объектов

Изобретение относится к области вентиляторостроения, в частности к центробежным вентиляторам с профильными загнутыми назад лопатками рабочего колеса, и обеспечивает повышение аэродинамической нагруженности центробежного вентилятора с помощью устранения отрывного вихреобразования на тыльной стороне лопатки его рабочего колеса

Изобретение относится к области вентиляторостроения, в частности к центробежным вентиляторам, и позволяет при его использовании регулировать режим работы и эффективно устранять отрывное вихреобразование в зоне покрывного диска рабочего колеса вентилятора

Изобретение относится к области вентиляторостроения, в частности к центробежным вентиляторам, и расширяет область его применения за счет эжектирующего действия предварительной закрутки поверхностного слоя основного воздушного потока, что уменьшает потери энергии на дросселирование от соударения потоков в зоне смешения

Изобретение относится к технике безопасности в угольной промышленности, а именно к способу оценки эндогенной пожароопасности действующих выемочных участков при разработке пластов угля, склонных к самовозгоранию

 


Наверх