Патенты автора Мингажева Алиса Аскаровна (RU)

Изобретение относится к металлургии, в частности к способам химико-термической обработки деталей из легированных сталей, и может быть использовано в машиностроении для поверхностного упрочнения деталей машин, в том числе деталей, работающих в парах трения, режущего инструмента и штамповой оснастки. Способ химико-термической обработки детали из легированной стали включает размещение детали в рабочей камере, подачу в камеру рабочей насыщающей среды, нагрев детали до температуры химико-термической обработки и выдержку при этой температуре до формирования необходимой толщины диффузионного слоя. Диффузионный слой формируют в виде локальных участков общей площадью от 60 до 90% от площади обрабатываемой поверхности детали. Локальные участки формируют в виде кругов диаметром от 0,3 мм до 4 мм, или в виде овалов длиной от 0,5 мм до 4 мм и шириной от 0,3 мм до 2 мм, или в виде сочетания кругов и овалов указанных размеров. Локальные участки в виде кругов и/или овалов формируют с равномерным их распределением по поверхности детали. Перед химико-термической обработкой проводят активирование поверхности детали ионно-имплантационной обработкой при энергии ионов от 25 до 30 кэВ, дозе облучения от 1,6⋅1017 см-2 до 2⋅1017 см-2, скорости набора дозы облучения от 0,7⋅1015 с-1 до 1⋅1015 с-1 и при использовании в качестве имплантируемых ионов элементов, выбранных из С, N или их комбинации. Обеспечивается повышение износостойкости деталей после химико-термической обработки. 11 з.п. ф-лы, 1 табл., 1 пр.
Изобретение относится к металлургии, в частности к способам химико-термической обработки деталей из сплава на основе титана, и может быть использовано в машиностроении для поверхностного упрочнения деталей машин, в том числе деталей, работающих в парах трения. Способ химико-термической обработки детали из сплава на основе титана включает размещение детали в рабочей камере установки, активирование поверхности детали перед химико-термической обработкой, подачу в камеру рабочей насыщающей среды, нагрев детали до температур химико-термической обработки и выдержку при этих температурах до формирования необходимой толщины диффузионного слоя. Активирование поверхности детали перед химико-термической обработкой проводят с помощью ионно-имплантационной обработки поверхности детали при энергии ионов от 30 до 40 кэВ, дозой от 1,4⋅1017 см-2 до 1,8⋅1017 см-2, со скоростью набора дозы от 0,7⋅1015 с-1 до 1⋅1015 с-1, при этом в качестве имплантируемых ионов используют ионы следующих элементов: С, N, или их комбинации. В частных случаях осуществления изобретения химико-термическую обработку детали проводят ионно-плазменным азотированием или ионно-плазменной цементацией или ионно-плазменной нитроцементацией. Обеспечивается повышение производительности и качества процесса химико-термической обработки, а также повышение износостойкости деталей после химико-термической обработки. 2 з.п. ф-лы, 1 пр.
Изобретение относится к металлургии, в частности к способам химико-термической обработки деталей из сплава на основе никеля, и может быть использовано для изготовления деталей и узлов горячего тракта газотурбинных авиационных двигателей, стационарных газотурбинных установок и других изделий, работающих при высоких температурах. Способ химико-термической обработки детали из сплава на основе никеля включает размещение детали в рабочей камере установки, активирование поверхности детали перед химико-термической обработкой, подачу в камеру рабочей насыщающей среды, нагрев детали до температур химико-термической обработки и выдержку при этих температурах до формирования необходимой толщины диффузионного слоя. Активирование поверхности детали перед химико-термической обработкой проводят с помощью ионно-имплантационной обработки поверхности детали при энергии ионов от 35 до 50 кэВ, дозе облучения от 1,2·1017 см-2 до 1,6·1017 см-2, скорости набора дозы облучения от 0,6·1015 с-1 до 0,9·1015 с-1, при этом в качестве имплантируемых ионов используют ионы С, N, Cr, Y, Yb или их комбинации. В частных случаях осуществления изобретения химико-термическую обработку детали проводят ионно-плазменным азотированием, или ионно-плазменной цементацией, или ионно-плазменной нитроцементацией. Обеспечивается повышение производительности и качества процесса химико-термической обработки, а также повышение износостойкости деталей после химико-термической обработки. 2 з.п. ф-лы, 1 пр. .
Изобретение относится к металлургии, в частности к способам химико-термической обработки деталей из сплава на основе кобальта, и может быть использовано для изготовления деталей и узлов горячего тракта газотурбинных авиационных двигателей, стационарных газотурбинных установок и других изделий, работающих при высоких температурах. Способ химико-термической обработки детали из сплава на основе кобальта включает размещение детали в рабочей камере установки, активирование поверхности детали перед химико-термической обработкой, подачу в камеру рабочей насыщающей среды, нагрев детали до температур химико-термической обработки и выдержку при этих температурах до формирования необходимой толщины диффузионного слоя. Активирование поверхности детали перед химико-термической обработкой проводят с помощью ионно-имплантационной обработки поверхности детали при энергии ионов от 35 до 50 кэВ, дозе облучения от 1,2·1017 см-2 до 1,6·1017 см-2, скорости набора дозы облучения от 0,6·1015 с-1 до 0,9·1015 с-1 и при использовании в качестве имплантируемых ионов ионов следующих элементов: С, N, Cr, Y, Yb или их комбинации. В частных случаях осуществления изобретения химико-термическую обработку детали проводят ионно-плазменным азотированием или ионно-плазменной цементацией или ионно-плазменной нитроцементацией. Обеспечивается повышение производительности и качества процесса химико-термической обработки, а также повышение износостойкости деталей после химико-термической обработки. 2 з.п. ф-лы, 1 пр.
Изобретение относится к металлургии, в частности к способам химико-термической обработки деталей из титана, и может быть использовано в машиностроении для поверхностного упрочнения деталей машин, в том числе деталей, работающих в парах трения. Способ химико-термической обработки детали из титана включает размещение детали в рабочей камере установки, активирование поверхности детали перед химико-термической обработкой, подачу в камеру рабочей насыщающей среды, нагрев детали до температур химико-термической обработки и выдержку при этих температурах до формирования необходимой толщины диффузионного слоя. Активирование поверхности детали перед химико-термической обработкой проводят с помощью ионно-имплантационной обработки поверхности детали при энергии ионов от 30 до 40 кэВ, дозой от 1,4·1017 см-2 до 1,8·1017 см-2, со скоростью набора дозы от 0,7·1015 с-1 до 1·1015 с-1 и при этом в качестве имплантируемых ионов используют ионы С, N или их комбинации. В частных случаях осуществления изобретения химико-термическую обработку детали проводят ионно-плазменным азотированием, или ионно-плазменной цементацией, или ионно-плазменной нитроцементацией. Обеспечивается повышение производительности и качества процесса химико-термической обработки, а также повышение износостойкости деталей после химико-термической обработки. 2 з.п. ф-лы.

Изобретение относится к области охраны окружающей среды и может быть использовано при разливе нефти (нефтепродуктов) под ледяным покровом преимущественно арктических водоемов. Предложен способ сбора нефти или нефтепродукта из-под ледяного покрова водоема, включающий локализацию пятна нефти или нефтепродукта и последующее удаление нефти или нефтепродукта откачкой в нефтеприемник. При этом в область локализации пятна нефти или нефтепродукта под ледяной покров подают по крайней мере один понтон, накачивают его воздухом в количестве, достаточном для создания подъемной силы, достаточной для подъема и деформации ледяного покрова с образованием купола на участке локализации пятна нефти или нефтепродукта, обеспечивающего сбор нефти или нефтепродукта, находящегося между поверхностью воды и ледяным покровом. Предложено устройство для реализации способа. Результатом является повышение производительности сбора нефти от 1,8 до 2,6 раз и снижение трудоемкости в 4-6 раз. 2 н. и 22 з.п. ф-лы, 5 ил.
Изобретение относится к металлургии, в частности к способам химико-термической обработки металлов и сплавов, и может быть использовано в машиностроении для поверхностного упрочнения деталей машин, в том числе деталей, работающих в парах трения, а также режущего инструмента и штамповой оснастки. Способ химико-термической обработки детали из легированной стали включает размещение детали в рабочей камере, активирование поверхности детали перед химико-термической обработкой, подачу в камеру рабочей насыщающей среды, нагрев детали до температуры химико-термической обработки и выдержку при этой температуре до формирования необходимой толщины диффузионного слоя. Активирование поверхности детали перед химико-термической обработкой проводят с помощью ионно-имплантационной обработки поверхности детали при энергии ионов от 25 до 30 кэВ, дозе облучения от 1,6·1017 см-2 до 2·1017 см-2, скорости набора дозы облучения от 0,7·1015 с-1 до 1·1015 с-1 и при использовании в качестве имплантируемых ионов следующих элементов: С, N или их комбинации. В частных случаях осуществления изобретения химико-термическую обработку детали проводят ионно-плазменным методом. В качестве ионно-плазменного метода используют ионно-плазменное азотирование, или ионно-плазменную цементацию, или ионно-плазменную нитроцементацию. Обеспечивается повышение производительности и качества процесса химико-термической обработки, а также повышение износостойкости деталей после нее. 2 з.п. ф-лы, 1 пр.

Изобретение относится к технике и технологии нанесения защитных ионно-плазменных покрытий и может быть применено в машиностроении, например, для защиты рабочих и направляющих лопаток турбомашин. Способ включает размещение деталей в вакуумной камере, приложение к деталям потенциала электрического смещения, ионную очистку поверхности деталей и нанесение на них покрытия электродуговым испарением материала катода. Катод выполнен в виде цилиндрической обечайки с магнитным фиксатором области катодных пятен. Фиксатор выполнен с возможностью обеспечения области образования катодных пятен в виде полосы, ориентированной вдоль продольной оси цилиндрической обечайки катода и перемещающейся по траектории, коаксиальной окружности цилиндрической обечайки катода с сохранением своей ориентации. Возвратно-поступательное перемещение области катодных пятен по упомянутой полосе осуществляют за счет переключения полярности противоположных торцов катода. В установке используют центральное расположение катода в вакуумной камере. В результате достигается равномерность покрытия. 2 н. и 16 з.п. ф-лы, 4 ил, 1 пр.

Изобретение относится к измерительной технике и может быть использовано для экспресс-определения физико-механических свойств твердых материалов, в частности для оценки степени упрочнения поверхностного слоя деталей после защитно-упрочняющей обработки

Изобретение относится к машиностроению и может быть использовано для нанесения теплозащитных покрытий на лопатки энергетических и транспортных турбин, в особенности газовых турбин авиадвигателей

Изобретение относится к области машиностроения, а именно к испытаниям деталей сложной формы, имеющих внутренние полости охлаждения, преимущественно рабочих и сопловых лопаток газотурбинных двигателей и установок
Изобретение относится к области машиностроения и может быть использовано в турбомашиностроении при восстановлении рабочих и направляющих лопаток паровых турбин, газоперекачивающих установок и компрессоров газотурбинных двигателей, изготовленных из титановых сплавов
Изобретение относится к области машиностроения и может быть использовано в турбомашиностроении при восстановлении рабочих и направляющих лопаток паровых турбин, газоперекачивающих установок и компрессоров газотурбинных двигателей, изготовленных из легированных сталей

Изобретение относится к области машиностроения, а именно к испытаниям деталей с высокотемпературными покрытиями, преимущественно газотурбинных двигателей и установок
Изобретение относится к области машиностроения, а именно к методам нанесения теплозащитных покрытий на лопатки энергетических и транспортных турбин и в особенности газовых турбин авиадвигателей

Изобретение относится к технике вакуумного нанесения ионно-плазменных покрытий, а именно к электродуговым испарителям, и может быть использовано в машиностроении для нанесения покрытий на протяженные изделия, например лопатки паровых турбин

Изобретение относится к технике вакуумного нанесения износо-, коррозионно- и эрозионностойких ионно-плазменных покрытий и может быть применено в машиностроении, например, для защиты рабочих и направляющих лопаток турбомашин
Изобретение относится к способам нанесения нанослойных покрытий для защиты лопаток турбомашин из титановых сплавов
Изобретение относится к способам нанесения нанослойных покрытий на лопатки турбомашин из легированных сталей

Изобретение относится к технике вакуумного нанесения износо-, коррозионно- и эрозионностойких ионно-плазменных покрытий и может быть применено в машиностроении, преимущественно для ответственных деталей, например рабочих и направляющих лопаток турбомашин

Изобретение относится к установкам для электролитно-плазменной обработки изделий из нержавеющих сталей и титановых сплавов и может быть использовано в турбомашиностроении при полировании лопаток
Изобретение относится к способу вакуумного нанесения ионно-плазменных покрытий и может быть применено в машиностроении, преимущественно, для ответственных деталей, например, рабочих и направляющих лопаток турбомашин

Изобретение относится к измерительной технике
Мы будем признательны, если вы окажете нашему проекту финансовую поддержку!

 


Наверх