Патенты автора Кудряшов Александр Евгеньевич (RU)

Изобретение относится к области электрофизических методов нанесения покрытий на переходные металлы IV-VI групп и сплавов на их основе с формированием покрытия толщиной до 200 мкм, содержащего карбиды, углерод в виде включений в объеме покрытия и углеродный слой на поверхности. Способ включает вакуумирование рабочего пространства камеры, подачу аргона или его смеси с газами из ряда алифатических углеводородов с числом атомов углерода не более трех, при молярной доле углеводорода в смеси 0-80%, стабилизацию давления в диапазоне 0,05-3 Па, многократное сканирование вращающимся углеродным электродом обрабатываемого участка поверхности в режиме касания поверхности с шагом сканирования, не превышающим половины диаметра торца электрода, подачу между электродом и поверхностью электрических импульсов катодной или анодной полярности с напряжением 30-150 В с длительностью 40-300 мкс и частотой следования 20-3000 Гц. При этом многократное сканирование проводят при обеспечении перекрытия последовательных треков и количестве проходов над каждым участком поверхности 5-30 раз. В качестве упомянутых газов из ряда алифатических углеводородов с числом атомов углерода не более трех используют метан, этан, пропан, этилен, пропилен, ацетилен. Способ при снижении времени обработки обеспечивает высокое содержание карбидной фазы в покрытии, формирование твердого слоя аморфного углерода на поверхности, а также снижение коэффициента трения и скорости износа. 3 з.п. ф-лы, 7 ил., 1 табл., 4 пр.

Изобретение относится к медицине. Описан способ получения биоактивного покрытия с антибактериальным эффектом, который включает электроискровую обработку поверхности подложки обрабатывающим электродом, следующего состава (вес. %):биоактивная добавка - 5-40,антибактериальная металлическая добавка - 0,5-5, биосовместимый металл - остальное. Электроискровую обработку проводят при следующих режимах:100≤Ni≤10000, 10≤f≤100000, 0,01≤v≤0,6, где Ni - мощность единичного импульсного разряда, Вт, f - частота импульсных разрядов, Гц. Технический результат заключается в обеспечении получения на имплантатах, изготовленных из специальных сплавов медицинского назначения, сплошных биосовместимых, биоактивных покрытий с антибактериальным эффектом с высокой величиной адгезии (более 100 Н), высокой износостойкостью и с заданным рельефом. v - линейная скорость перемещения обрабатывающего электрода, м/мин. 3 з.п. ф-лы, 1 табл.

Изобретение относится к области медицины, а именно к способу получения биоактивного покрытия с антибактериальным эффектом, включающий электроискровую обработку поверхности токопроводящей подложки обрабатывающим электродом, состоящим из биоактивной добавки в количестве 5-40 вес.%; антибактериальной металлической добавки в количестве 0,5-5 вес.%; и биосовместимого тугоплавкого соединения в количестве остальное, при этом электроискровую обработку проводят при следующих условиях: 100 ≤ Ni ≤ 10000, 10 ≤ f ≤ 100000, 0,01 ≤ v ≤ 0,6, где Ni - мощность единичного импульсного разряда, Вт, f - частота импульсных разрядов, Гц, v - линейная скорость перемещения обрабатывающего электрода, м/мин. Изобретение обеспечивает получение на имплантатах сплошных биосовместимых, биоактивных покрытий с антибактериальным эффектом с высокой величиной адгезии (более 100 Н), высокой износостойкостью и с заданным рельефом. 3 з. п. ф-лы, 1 табл.

Изобретение относится к порошковой металлургии, в частности к антифрикционным материалам и способам их получения
Изобретение относится к обработке поверхности металлов и сплавов, а именно к композиционным электродным материалам для получения дисперсно-упроченных наночастицами покрытий

Изобретение относится к способу получения дисперсно-упрочненных наночастицами покрытий и может быть использовано при упрочнении инструментов и деталей машин, в том числе авиационно-космического назначения

 


Наверх