Патенты автора Ковров Вадим Анатольевич (RU)

Изобретение относится к ядерной энергетике, в частности к способам переработки отработавшего ядерного топлива, и может быть использовано в технологии переработки отработавшего ядерного топлива в схеме замкнутого ядерного топливного цикла, извлеченного из тепловыделяющих элементов. Способ переработки нитридного отработавшего ядерного топлива в солевых расплавах включает его хлорирование в расплаве смеси хлоридов щелочных и/или щелочноземельных металлов, содержащей дихлорид кадмия. Хлорирование ведут в аппарате для переработки нитридного отработавшего ядерного топлива с использованием атмосферы инертного газа. В аппарате имеется нагреваемая зона, в которой размещен реактор с хлоридным расплавом и погруженным в него нитридным отработавшим ядерным топливом, а также расположенная под реактором холодная зона. В процессе хлорирования зону аппарата с реактором нагревают до температуры выше 700°С, нитридное отработавшее ядерное топливо выдерживают в расплаве до полного хлорирования, при этом холодную зону аппарата используют для кристаллизации образующегося при хлорировании металлического кадмия. Изобретение позволяет повысить степень конверсии нитридного ОЯТ в хлоридном расплаве до 100%. 1 з.п. ф-лы, 3 ил, 1 табл.

Заявлена группа изобретений, предназначенная для определения фильтрующих свойств, а именно: тонкости (номинальной и абсолютной) фильтрации и производительности (номинального и удельного расхода фильтрата), пористых металлических материалов (фильтров) по расплавленной смеси галогенидов щелочных металлов, в частности хлоридов натрия и калия эквимолярного состава с содержанием нерасплавленных мелкодисперсных оксидов. Устройство содержит рабочую металлическую камеру (6) с индикаторным электродом (7), где размещают фильтруемую среду (3) и испытываемый пористый металлический материал, а также кварцевую ячейку (5) для фильтрата (1). Ячейку (5) и камеру (6) помещают в металлическую емкость (4) со штуцерами для поддержания инертной атмосферы. Расплавленное состояние фильтруемой среды (3) поддерживается нагревательным элементов (8). Инертная атмосфера создается использованием газового оборудования (9). Способ определения фильтрующих свойств включает три этапа. На первом устанавливают фильтр (2), обеспечивают инертную атмосферу и разогревают фильтруемую среду (3). На втором этапе производят фильтрационный процесс с поддержанием температуры фильтруемой среды (3) и рабочего давления на фильтр (2). Собирают фильтрат (1) и после опустошения резервуара с фильтруемой средой (3) завершают процесс и извлекают емкость с фильтратом (1). На третьем этапе определяют производительность и тонкость фильтрации испытываемых фильтров. Изобретение позволяет определить фильтрующие свойства пористых металлов по расплавленной смеси хлоридов натрия и калия эквимолярного состава с содержанием нерасплавленных мелкодисперсных оксидов. 2 н. и 4 з.п. ф-лы, 1 ил.

Группа изобретений предназначена для определения фильтрующих свойств пористых керамических фильтров в форме цилиндров с боковой фильтрующей поверхностью по расплавленной смеси галогенидов щелочных металлов, например, хлоридов натрия и калия эквимолярного состава с содержанием нерасплавленных мелкодисперсных оксидов. Устройство для определения фильтрующих свойств керамических фильтров содержит рабочую кварцевую ячейку для размещения фильтруемой среды в виде расплава галогенидов щелочных металлов эквимолярного состава с содержанием нерасплавленных мелкодисперсных оксидов, установленную в ячейке кварцевую трубку для удерживания испытываемого фильтра в виде пористого керамического материала в форме цилиндра с боковой фильтрующей поверхностью, причем образец фиксируется с помощью герметизирующих уплотнений, кварцевый капилляр для отбора проб фильтрата, трубку барботера для перемешивания фильтруемой среды, нагревательный элемент для создания и поддержания расплавленного состояния фильтруемой среды. Способ для определения фильтрующих свойств керамических фильтров включает подготовительный этап, на котором готовят фильтруемую среду путем разогрева смеси галогенидов щелочных металлов эквимолярного состава и мелкодисперсных оксидов до температуры, превышающей температуру плавления хлоридов, но не превышающую температуру плавления мелкодисперсных оксидов; основной этап, на котором пропускают через испытываемый фильтр фильтруемую среду, при этом поддерживают полученную на первом этапе температуру и выполняют постоянное перемешивание фильтруемой среды, а процесс фильтрации ведут таким образом, чтобы внутри испытываемого образца фильтра не достигалось максимальное заполнение фильтратом, для чего отбирают избыток фильтрата; заключительный этап, на котором определяют производительность и тонкость фильтрации испытываемых керамических фильтров. Для определения номинального расхода фильтрата делят полную массу отобранного на втором этапе фильтрата на полное время его отбора. Для определения удельного расхода фильтрата делят полученное значение номинального расхода фильтрата на свободную площадь боковой фильтрующей поверхности испытываемого образца фильтра, определяемой как 2πRL, где R - внешний радиус испытываемого образца фильтра, L - длина испытываемого образца фильтра, находящаяся в фильтруемой среде. Для определения номинальной тонкости фильтрации определяют размеры частиц той фракции мелкодисперсных оксидов, которую обнаруживают в отобранном на втором этапе фильтрате при заданном коэффициенте отсева. Для определения абсолютной тонкости фильтрации определяют максимальные размеры частиц мелкодисперсных оксидов в отобранном на втором этапе фильтрате. Технический результат: обеспечение возможности определения производительности и тонкости фильтрации керамических фильтров. 2 н. и 4 з.п. ф-лы, 1 ил.

Изобретение относится к ядерной энергетике. Способ переработки тепловыделяющих элементов с нитридным отработавшим ядерным топливом включает растворение их фрагментов до получения электролитного раствора, содержащего соединения актинидов, пригодного для их выделения. Растворение тепловыделяющих элементов с отработавшим ядерным топливом осуществляют хлорированием в хлоридном расплаве, содержащем хлорид PbCl2. Хлорирование ведут при температуре от 400 до 750°С. Изобретение позволит исключить стадию отделения оболочек ТВЭЛов от нитридного ОЯТ и обеспечить степень конверсии ОЯТ в хлориды актиноидов (в частности, хлорид UCl3) до 100% 1 з.п. ф-лы, 1 ил., 1 табл.

Изобретение относится к ядерной энергетике и может быть использовано преимущественно в замкнутом ядерном топливном цикле (ЗЯТЦ). Способ включает восстановление компонентов оксидного ядерного топлива при электролизе расплава хлорида лития с добавкой оксида лития в количестве не менее 1 мас. % с использованием кислородвыделяющего анода из NiO или ТiO2, допированных оксидом лития в количестве не менее 1 мас. %. При этом электролиз ведут при анодной плотности тока не выше 0.3 А/см2 и температуре не выше 700°С. Изобретение позволяет одновременно сокращать выдержку топлива перед переработкой и осуществлять стабильный и длительный процесс переработки с получением чистых металлов - компонентов ядерного топлива. 3 ил.

Изобретение относится к области химической технологии и может быть использовано для получения особо чистых галогенидных солей методом зонной перекристаллизации, применяемых, в частности, при пирохимической переработке ядерного топлива, химическом и электрохимическом синтезе элементов и соединений в получаемых солях. Установка содержит узел зонной перекристаллизации соли 1; систему подачи инертного газа, включающую блок подачи и очистки инертного газа 14, форвакуумный насос 15 и стационарную печь 16 перчаточного бокса 7; оборудование для осуществления вспомогательных действий с очищаемой солью, помещенное в перчаточный бокс 7 с инертным газом и содержащее измельчитель солей 8, весы аналитические 9, контейнер для хранения солей 10, нишу для хранения солей 11, реторту для сушки и переплавки солей; при этом узел зонной перекристаллизации соли 1 содержит контейнер с очищаемой солью 2, помещенный в кварцевую трубу 3, торцевые крышки 4 для герметизации контейнера 2, нагреватель 5, оснащенный устройством 6 для его перемещения вдоль кварцевой трубы 3, а перчаточный бокс 7 оснащен шлюзом 13, причем перчаточный бокс 7 и шлюз 13 выполнены с возможностью размещения в каждом из них узла перекристаллизации 1 и соединены между собой, а также с системой подачи инертного газа таким образом, что имеют единое газовое пространство. Технический результат заключается в минимизации контакта очищаемой соли с отличной от инертного газа атмосферой для всех операций очистки галогенидной соли, включая загрузку исходной соли в контейнер с очищаемой солью и выгрузку очищенной соли. 1 ил.

Изобретение относится к области гальванотехники и может быть использовано для получения изделий, предназначенных для эксплуатации при высоких температурах. Способ включает погружение изделия в алундовый контейнер, содержащий электролит в виде фторидного расплава на основе AlF3 с добавками NaF и/или KF и анод в виде расплава алюминия на дне контейнера, и получение покрытия, содержащего алюминий, на изделии в качестве катода при температуре 700-980°C, при этом покрытие получают электроосаждением в короткозамкнутом гальваническом элементе, образованном алитируемым изделием, фторидным расплавом и анодом, замыканием экранированных алундовыми трубками токоподводов к катоду и аноду металлическим проводником. Технический результат заключается в получении градиентного покрытия на основе алюминидов железа, обладающего повышенной термостойкостью. 1 табл., 6 ил.

Изобретение относится к области гальванотехники и может быть использовано для нанесения защитного покрытия на изделия из низкоуглеродистой стали, которые могут эксплуатироваться при высоких температурах. Способ включает электролиз галогенидного алюминийсодержащего расплава при использовании алюминиевого анода, при этом покрытие наносят электролизом солевого расплава на основе AlF3 с добавками NaF и/или KF при температуре 700-980 °C, плотности тока не менее 0,5 А/см2 и использовании расплава алюминия в качестве анода. Технический результат: получение сплошного алюминидного покрытия, обладающего хорошей адгезией к стальной подложке, повышение содержания алюминия в покрытии, повышение жаростойкости стальных изделий и скорости алитирования. 1 табл., 2 ил.

Изобретение может быть использовано при изготовлении композиционного оксидно-металлического инертного кислородвыделяющего анода для электролитического получения металлов, в частности, алюминия. Состав шихты для изготовления указанного анода включает смесь оксидной и металлической составляющих, взятых в следующем соотношении, мас.%: металлическая - 10-30, оксидная - остальное. Оксидная составляющая включает смесь двух или более микроразмерных порошков оксидов, выбранных из ряда: оксид никеля, оксид железа, оксид меди, оксид хрома. Металлическая составляющая включает микроразмерные порошки меди или сплава на основе меди, а также содержит 2-10 мас.% наноразмерного порошка меди или сплава на основе меди с размером частиц до 100 нм. Изобретение позволяет увеличить удельную электропроводность анода при температуре 750-850 °C и снизить скорость его коррозии при низкотемпературном электролитическом получении алюминия из оксидно-фторидного расплава. 4 ил., 2 табл., 1 пр.

Изобретение относится к электрохимическому способу получения металлов, за исключением щелочных и щелочно-земельных, и/или сплавов металлов. Способ включает восстановление металлов и/или сплавов в кальцийсодержащем оксидно-галогенидном расплаве из соединений получаемых металлов и/или из смесей соединений металлов получаемых сплавов. Процесс электролиза ведут с использованием инертного кислородвыделяющего анода. При этом его осуществляют в расплаве, содержащем, мол.%: 55-97 CaCl2, 3-45 CaF2, с добавкой 1-22 мол.% CaO при катодной плотности тока не менее 0,1 А/см2 и анодной плотности тока не более 1 А/см2 и при температуре 700-900°С. Технический результат заключается в улучшении экологичности процесса за счет снижения прямого выделения хлора на инертном кислородвыделяющем аноде. 2 табл., 3 пр.

Изобретение относится к способам получения металлов, в частности алюминия, или сплавов электролизом расплавленных солей с кислородсодержащими добавками с использованием металлического и оксидно-металлического керметного инертного анода

Изобретение относится к цветной металлургии и способу электролитического получения алюминия

Изобретение относится к области цветной металлургии и электролитическому получению металлов и может быть использовано при получении алюминия электролизом криолит-глиноземного расплава с применением инертных анодов

Изобретение относится к алюминиевой промышленности, в частности к области получения алюминия путем электролиза криолит-глиноземного расплава, а именно к алюминиевому электроду сравнения

 


Наверх