Патенты автора Черкасов Александр Сергеевич (RU)

Изобретение относится к технологии изготовления топлива для высокотемпературных газоохлаждаемых реакторов и касается способа нанесения порошковых углеграфитовых покрытий на сферические топливные частицы - микротвэлы (далее - МТ). Cпособ получения графитового покрытия на сферических МТ заключается в том, что поверхность МТ предварительно обрабатывают суспензией, представляющей собой графитовый порошок в бакелитовом лаке, растворенном в смеси ацетона и бутилового спирта. Затем обработанные суспензией МТ смешивают с графитовым порошком и подвергают вибрационной обработке, в процессе которой формируется графитовый слой. Полученный после вибрационной обработки слой подвергают сушке, а затем аналогичным образом формируют последующий слой/слои. При этом при формирования первого слоя покрытия используют графитовый порошок с размером частиц ≤0,05 диаметра МТ. Изобретение позволяет получить равномерное качественное покрытие, избежать образования агломератов и слипания МТ между собой и тем самым повысить его прочность и снизить брак, обусловленный частичным разрушением и осыпанием покрытия при перегрузке МТ, и обеспечить выход годного на уровне 95-96%. 5 з.п. ф-лы, 1 ил.

Изобретение относится к области технологии ядерного топлива и может быть использовано при получении уранграфитовых тепловыделяющих элементов для высокотемпературных газоохлаждаемых ядерных реакторов. Способ получения уранграфитового твэла включает приготовление шихты смешиванием порошка графита, фенолформальдегидной смолы и микротвэлов, которые перед приготовлением шихты предварительно покрывают слоем порошка графита толщиной не менее 0,25 диаметра МТ. Заготовки формуют путем прессования и температурной обработки в пресс-форме под давлением 10-15 МПа, поднимая температуру до 250-300°С, по достижении которой давление снимают перед извлечением заготовок из пресс-форм. Затем осуществляют карбонизацию смолы и высокотемпературную термообработку. Изобретение позволяет снизить брак за счет предотвращения трещинообразования и искривлений при изготовлении цилиндрического уранграфитового твэла с увеличенной объемной долей МТ (более 20% об.). 2 з.п. ф-лы, 1 табл.

Изобретение может быть использовано для изготовления электродов, тиглей, нагревателей, материалов для атомной техники, например уран-графитовых тепловыделяющих элементов. Заготовки помещают в контейнер из графлекса или графита, используя в качестве засыпки карбамид в количестве 5-10 мас. % заготовок. Контейнер с заготовками накрывают крышкой, обеспечивая ограниченный доступ воздуха, и помещают в замкнутую ёмкость, которую заполняют углеродной засыпкой - нефтяным гранулированным коксом, также добавляя в него карбамид в количестве 5-10 мас. % засыпки. Обжиг заготовок проводят при нагревании до 750-800°С. Упрощается процесс обжига, повышается качество углеграфитовых изделий, особенно малогабаритных, за счет исключения их окисления и прикоксовывания засыпки. 3 з.п. ф-лы, 1 табл.
Изобретение относится к химии и технологии урана и может быть использовано для получения оксидов урана высокой степени чистоты при переработке урановых твэлов, содержащих гадолиний. Концентрат урана с примесью гадолиния растворяют в (4-6) М азотной кислоте, взятой в количестве, превышающем стехиометрически необходимое не менее чем на 20%. Нейтрализуют остаточную кислотность раствора содержащим кальций оксидом или гидроксидом или карбонатом или их сочетанием до рН=(1,0-2,5). В виде водорастворимого соединения вводят в раствор фтор-ион в количестве, обеспечивающем (1,5-2,0)-кратный стехиометрический избыток по отношению к введенному кальцию. Делают выдержку до завершения образования осадка, которая может составлять от 2 до 4 часов, фильтруют и из фильтрата аммиаком или перекисью водорода осаждают уран. Изобретение позволяет очищать концентрат урана от гадолиния простым осадительным методом, при его высоком прямом извлечении и селективности. 2 з.п. ф-лы.

Изобретение относится к гидрометаллургии урана и тория и может быть использовано для сорбционного извлечения тория из нитратных растворов урана и тория методом ионного обмена. Способ сорбционного извлечения тория из нитратных растворов урана и тория, включающий сорбцию тория на сульфокатионите с последующей промывкой катионита, отличающийся тем, что сульфокатионит перед сорбцией тория предварительно насыщают ураном, а после промывки катионита проводят сорбцию тория при концентрации тория в растворе, не превышающей 30 мг/л, и расходе нитратного раствора урана и тория 0,75-1,0 л на 1,0 л сульфокатионита в час. Способ обеспечивает высокую степень извлечения тория из урансодержащих растворов без загрязнения их посторонними примесями и позволяет при этом использовать ионообменные смолы с невысокой степенью селективности. 3 з.п. ф-лы, 1 табл.

Изобретение относится к химии и технологии урана и может быть использовано в атомной промышленности для конверсии обедненного (отвального) гексафторида урана (ОГФУ), накопленные запасы которого превышают 600 тыс. тонн и представляют большую экологическую опасность. Способ переработки гексафторида урана включает охлаждение гексафторида урана при удалении его из контейнера, гидролиз с последующим осаждением и выделением урана из водного раствора, при этом удаление гексафторида урана из контейнера ведут путем вымывания гексафторида урана химически инертной и нерастворимой в воде охлажденной жидкостью из класса перфторуглеродов общей формулой CnF2n+2, гидролиз полученной суспензии осуществляют путем промывания водой при температуре, не превышающей 35-40°С, до завершения перехода урана в водную фазу, образовавшуюся эмульсию подвергают расслаиванию, после чего органическую фазу вновь используют для вымывания гексафторида, а из водной выделяют уран. Для промывания суспензии водой и последующего расслоения жидкостной эмульсии используют аппарат типа смеситель-отстойник. Технический результат заключается в снижении доли ручного труда, повышении безопасности обслуживающего персонала, сокращении потерь урана. 1 з.п. ф-лы.
Изобретение относится к гидрометаллургической переработке кислотоупорных урансодержащих материалов, а именно - техногенных отходов, образующихся в результате окислительной переработки твэлов сложного многокомпонентного состава. Способ включает измельчение исходного урансодержащего материала в присутствии бифторида аммония, обработку полученной механо-химически активированной шихты 1,5-4,0 М раствором азотной кислоты при Т:Ж=1:(3,5-4,5), температуре 80-90°С, в течение 1,0-4,0 часов и завершение растворения при остаточной кислотности не менее 0,25 М, далее пульпу фильтруют и выделяют уран из фильтрата посредством жидкофазной противоточной экстракции. Изобретение обеспечивает упрощение процесса переработки урансодержащих материалов, высокую степень извлечения урана в раствор более чем на 95,0%, экологическую безопасность производства, а также сокращение отходов и снижение материальных затрат на их утилизацию. 2 з.п. ф-лы, 2 пр.

Изобретение относится к области металлургии и технологии урана, в частности к способу переработки уран-молибденовой композиции. Способ переработки уран-молибденовой композиции включает ее окисление и прокаливание в воздушной среде с последующим отделением молибдена от урансодержащего твердого остатка. Окисление уран-молибденовой композиции проводят при температуре ниже точки плавления триоксида молибдена, полученную после окисления смесь оксидов урана и молибдена измельчают до частиц, размер которых не превышает 500 мкм. Полученные частицы распределяют слоем толщиной не более 15 мм и прокаливают при температуре выше точки кипения триоксида молибдена, при этом продолжительность прокаливания рассчитывают по формуле Т=0,8Н+11,5D, где Т - продолжительность прокаливания, ч, Н - толщина слоя оксидов урана и молибдена, мм, D - средний размер частиц оксидов урана и молибдена, мм. Изобретение позволяет сократить стадийность и упростить процесс разделения урана и молибдена, исключить перевод уран-молибденовой композиции в солевой раствор и его гидрометаллургический передел без снижения степени очистки закиси-окиси урана от молибдена. 2 з.п. ф-лы, 1 табл.

Изобретение относится к области спектрометрии заряженных частиц и может быть использовано для измерения энергетического спектра импульсно-периодических и непрерывных пучков заряженных частиц. Технический результат - подавление высокочастотных гармоник в регистрируемом сигнале при сохранении возможности определять распределение напряжений на поглощающих элементах с последующим восстановлением энергетического спектра заряженных частиц в режиме реального времени. В спектрометре заряженных частиц, содержащем расположенные последовательно по ходу распространения пучка электропроводящие поглощающие элементы, изолированные друг от друга, и систему регистрации и обработки импульсов напряжения, причем суммарная толщина поглощающих элементов находится в соответствии с экстраполированным пробегом заряженных частиц с максимальной энергией в материале поглощающих элементов, согласно изобретению новым является то, что каждый поглощающий элемент подключен к заземляющей шине через сглаживающий интегрирующий RC-фильтр, состоящий из параллельно включенных резистора и конденсатора, при этом система регистрации и обработки подключена к незаземленному выводу резистора. 3 ил.

Изобретение относится к металлургии и атомной технике и может быть использовано для пирометаллургического рафинирования чернового урана, полученного кальциетермическим восстановлением тетрафторида урана. Рафинирование чернового урана, полученного кальциетермическим методом, включает термообработку слитка в вакуумной печи с последующим удалением неметаллических включений с поверхности металла. Термообработку слитка чернового урана проводят в несколько этапов. Сначала нагрев и выдержку проводят в атмосфере вакуума при температуре ниже точки плавления урана, но выше температуры плавления кальция. Затем меняют атмосферу на аргон, осуществляют нагрев до температуры выше точки плавления урана, но ниже точки кипения кальция и проводят выдержку при этой температуре. Затем атмосферу снова меняют на вакуум, осуществляют нагрев до температуры 1250-1300°С и проводят выдержку при указанной температуре. Изобретение позволяет сократить содержание примесей в рафинированном металле и увеличить выход урана в слиток до 91,1%. 4 з.п. ф-лы, 1 табл.

Изобретение относится к области ядерной энергетики. Способ переработки отходов ядерного производства включает электрохимическое растворение твэлов в растворе азотной кислоты в электролизере при постоянном поддержании концентрации азотной кислоты в диапазоне 5,0÷6,0 М. Корпус электролизера является катодом. Анод выполнен в виде зажима с возможностью его периодического разжатия и сжатия при отклонении тока от номинального значения до 10%. При этом отношение площадей поверхности анодной части, погруженной в раствор, и растворяемых твэлов составляет (2÷7):1, а отношение плотностей тока на аноде и растворяемых твэлах составляет 1:(2÷7). После электрохимического растворения, сопровождающегося удалением оболочки и частичным растворением урана, осветленные растворы направляют на экстракционное извлечение урана, а нерастворенные остатки помещают в смесь азотной и плавиковой кислот с добавлением в раствор алюминия при молярном соотношении компонентов HF:HNO3:Al=1:(4÷8):(0,2÷0,4). Осветленные растворы подвергают экстракционному извлечению урана. Изобретение позволяет повысить извлечение урана при переработке твэлов в оболочке из нержавеющей стали с топливным сердечником, содержащим цирконий. 1 з.п. ф-лы, 1 табл.

Изобретение относится к области гидрометаллургии урана и может быть использовано при его регенерации в результате химической переработки отработанных, бракованных или невостребованных твэлов. Способ переработки уран-циркониевых отходов в виде твэлов заключается в том, что исходные твэлы подвергают фрагментации и окисляют на воздухе при температуре 1000-1250°C до прекращения изменения веса. Окисленные фрагменты обрабатывают (3-6)N азотной кислотой при соотношении реагирующих фаз Т:Ж=1:(3÷6) в течение 4-6 часов при температуре 70-90°C. Затем осуществляют фильтрацию и извлечение урана из раствора. Изобретение позволяет существенно снизить скорость коррозии аппаратуры за счет селективного растворения урана, обеспечивает более чем 98% извлечение урана без использования плавиковой кислоты и, кроме того, существенно оптимизирует процесс переработки. 3 з.п. ф-лы, 1 табл.

Изобретение относится к порошковой металлургии и может быть использовано для получения исходного сырья для изготовления нитридного ядерного топлива. Способ получения порошка нитрида урана включает нагрев металлического урана, который осуществляют в вакуумируемой реакционной емкости при остаточном давлении 10-1÷10-2 мм рт.ст. и температуре 250÷300°С, с последующим напуском водорода до давления 750÷800 мм рт.ст. Гидрирование урана проводят в течение времени, которое определяют по заданной формуле. Реакционную емкость с полученным порошком гидрида урана подвергают повторному вакуумированию при температуре, не превышающей 220°С, до достижения остаточного давления в реакционной емкости 10-1÷10-2 мм рт.ст. Азотирование полученного порошка гидрида урана осуществляют в протоке азота при температуре 250÷300°С, при этом регулируют давление в реакционной емкости от 1 до 800 мм рт.ст. в зависимости от изменения площади реакционной поверхности порошка гидрида урана. Обеспечивается увеличение дисперсности порошков нитрида урана и снижение длительности процесса их получения. 1 з.п. ф-лы, 1 табл., 1 пр.

Изобретение относится к области гидрометаллургии, в частности к способу переработки уран-молибденовой композиции, представляющей собой брак и отходы ядерного производства. Способ переработки уран-молибденовой композиции согласно изобретению включает окисление уран-молибденовой композиции при температуре 750-850°С, растворение композиции в 2-3-молярном растворе щелочи при температуре кипения, отделение раствора от твердого остатка декантацией, растворение твердого остатка в 4-6-молярной азотной кислоте при температуре кипения, переочистку раствором щавелевой кислоты из расчета на 1 кг урана 0,75-1,0 кг щавелевой кислоты при температуре 60-80°С в течение 30-40 мин, промывку осадка оксалата уранила 2-3% раствором щавелевой кислоты, отделение урансодержащего твердого остатка фильтрованием, прокаливание при температуре 750-850°С. Изобретение позволяет повысить степень очистки закиси-окиси урана от молибдена. 1 табл.

Изобретение относится к области технологии ядерных материалов, в частности к производству ядерного топлива с определенным содержанием изотопа 235U
Изобретение относится к области гидрометаллургии, в частности к способу переработки уран-молибденовой композиции, представляющей собой брак и отходы ядерного производства
Изобретение относится к области гидрометаллургии, в частности к способам переработки отходов уран-циркониевых композиций в виде невостребованных твэлов, брака и отходов их производства с целью извлечения урана и последующего его использования в производстве ядерного топлива
Изобретение относится к области гидрометаллургии, в частности к способам переработки урансодержащих топливных композиций, представляющих собой невостребованные твэлы, брак и отходы их производства с целью извлечения урана и последующего его использования в производстве ядерного топлива

Изобретение относится к области ядерной энергетики, в частности к электрохимической переработке ядерного горючего

 


Наверх