Патенты автора Овчинникова Елена Викторовна (RU)

Изобретение относится к способу получения этилена из легковозобновляемого растительного сырья, не имеющего продовольственной ценности. Предложен способ получения этилена из легковозобновляемого растительного сырья непродовольственного назначения, который включает измельчение сырья, предварительную химическую обработку 3-6%-ным раствором азотной кислоты при 90-95°С и атмосферном давлении в течение 3-6 ч, предварительное осахаривание осуществляют в течение 18-24 ч, совмещенный процесс осахаривания и сбраживания, в результате которого получают бражку, которую подвергают дистилляции и получают этанол концентрацией 90-96 мас. %, который содержит примеси в расчете на безводный этанол С3 спиртов не более 7 г/л, ионов натрия не более 0,01 мг⋅экв/л, полученный продукт - этанол направляют в каталитический реактор, где осуществляют его дегидратацию с получением реакционного газа, содержащего этилен, остаточный этанол и пары воды, из которого выделяют газовую фазу этилена, а полученную после реактора дегидратации этанола жидкую фазу, содержащую воду с растворенным в ней остаточным этанолом, смешивают с потоком бражки и направляют на дистилляцию, а отход спиртового производства – барду - направляют на сжигание и генерацию тепла, с последующим его использованием в эндотермическом процессе дегидратации этанола в этилен. Технический результат - получение по экологически чистой и экономически привлекательной технологии высоковостребованного продукта - этилена. 3 з.п. ф-лы, 1 ил., 16 пр.
Изобретение относится к способу получения никотиновой кислоты путём прямого газофазного окисления 3-пиколина кислородом воздуха, в котором 3-пиколин, воздух, воду и газы рецикла подают в реактор, состоящий из трубок с неподвижным слоем гранулированного катализатора, омываемых хладагентом. При доле рецикла 80-90% от общего объема реакционной смеси концентрация 3-пиколина на входе в реактор составляет 0,8-1,1 мол.%, а мольное соотношение 3-пиколина, кислорода и воды - 1:/11-21/:/18-26/. Используется ванадий-титановый оксидный катализатор, содержащий оксиды ванадия 5-20 мас.%, модифицирующие добавки - оксид церия или один или несколько оксидов металлов, выбранных из IV группы и V периода Периодической таблицы с суммарным содержанием оксидов модифицирующих элементов в пределах 1,2-10,0 мас.%, оксиды титана анатазной модификации не менее 60 мас.%. Отношение размера гранул катализатора к внутреннему диаметру трубки составляет 1:/5,8-8,4/, а максимальная температура в слое катализатора на 5-20°С выше, чем температура хладагента. После реактора реакционные газы направляют на стадию выделения никотиновой кислоты в твердую фазу, после чего часть газов отделяют и производят рецикл, а из другой части реакционных газов либо выделяют в жидкую фазу не прореагировавшие 3-пиколин и 3-пиридинкарбальдегид и возвращают их в каталитический процесс получения никотиновой кислоты, либо направляют другую часть реакционных газов на обезвреживание и последующий сброс в атмосферу. Технический результат - увеличение съема никотиновой кислоты с единицы массы катализатора и увеличение полноты использования исходного 3-пиколина. 3 з.п. ф-лы, 12 пр.
Изобретение относится к способу получения никотиновой кислоты путём прямого газофазного окисления 3-пиколина кислородом или обогащённым кислородом воздухом, в котором 3-пиколин, кислород, воду и газы рецикла подают в реактор, состоящий из трубок с неподвижным слоем гранулированного катализатора, омываемых хладагентом. При доле рецикла 88-93% от общего объема реакционной смеси концентрация 3-пиколина на входе в реактор составляет 2,5-3,0 мол.%, а мольное соотношение 3-пиколина, кислорода и воды – 1:/11-21/:/17-26/. Используется бинарный ванадий-титановый оксидный катализатор. Отношение размера гранул катализатора к внутреннему диаметру трубки составляет 1:/5,8-8,4/, а максимальная температура в слое катализатора на 5-25°С выше, чем температура хладагента. После реактора реакционные газы направляют на стадию выделения никотиновой кислоты в твердую фазу, после чего часть газов отделяют и производят рецикл, а из другой части реакционных газов либо выделяют в жидкую фазу не прореагировавшие 3-пиколин и 3-пиридинкарбальдегид и возвращают их в каталитический процесс получения никотиновой кислоты, либо направляют другую часть реакционных газов на обезвреживание и последующий сброс в атмосферу. Технический результат – увеличение съема никотиновой кислоты с единицы массы катализатора и увеличение полноты использования исходного 3-пиколина. 3 з.п. ф-лы, 9 пр.
Изобретение относится к способу получения никотиновой кислоты путём прямого газофазного окисления 3-пиколина кислородом воздуха, в котором 3-пиколин, воздух, воду и газы рецикла подают в реактор, состоящий из трубок с неподвижным слоем гранулированного катализатора, омываемых хладагентом. При доле рецикла 70-90% от общего объема реакционной смеси концентрация 3-пиколина на входе в реактор составляет 0,78-1,1 мол.%, а лучше 0,8-1,0 мол.%, а мольное соотношение 3-пиколина, кислорода и воды – 1:/11-21/:/18-26/. Используется бинарный ванадий-титановый оксидный катализатор. Отношение размера гранул катализатора к внутреннему диаметру трубки составляет 1:/5,8-9,3/, а лучше 7,0, а максимальная температура в слое катализатора на 5-20°С выше, чем температура хладагента. После реактора реакционные газы направляют на стадию выделения никотиновой кислоты в твердую фазу, после чего часть газов отделяют и производят рецикл, а из остальной части реакционных газов либо выделяют в жидкую фазу непрореагировавшие 3-пиколин и 3-пиридинкарбальдегид и возвращают их в каталитический процесс получения никотиновой кислоты, либо направляют остальную часть реакционных газов на обезвреживание и последующий сброс в атмосферу. Технический результат – увеличение съема никотиновой кислоты с единицы массы катализатора и увеличение полноты использования исходного 3-пиколина. 3 з.п. ф-лы, 10 пр.

Настоящее изобретение относится к катализатору для процесса изомеризации н-бутана в изобутан, включающему в свой состав оксид металла III-IV групп, анион кислородсодержащей кислоты, причем он представляет собой каталитический комплекс общей формулы ZrxOy*aAn-, где: х=1-2, у=2-3, An- - анион серной кислоты, а=0.01-0.2, диспергированный непосредственно на гидратированном нанодисперсном ZrxOy, содержащий гидрирующий компонент. Также описаны варианты способа приготовления такого катализатора и способ каталитической изомеризации н-бутана н-бутана в изобутан, по которому в качестве катализатора используют описанный выше катализатор. Технический результат - увеличение производительности катализатора, снижение температуры и давления проведения процесса. 4 н. и 9 з.п. ф-лы, 5 табл., 52 пр.

Изобретение относится к способу получения этилена путем каталитической дегидратации этанола в реакторе, состоящем из вертикального корпуса с патрубками подвода исходного сырья и отвода продуктов реакции, патрубками подвода топливно-воздушной смеси и отвода дымовых газов, трубок, заполненных инертным материалом, предпочтительно из фарфоровой плотно спеченной массы, и гранулированным катализатором, предпочтительно на основе алюмооксидных систем, для проведения эндотермической реакции, а пространство между трубками заполнено находящимся в псевдоожиженном состоянии мелкодисперсным катализатором, предпочтительно на основе оксидов меди, марганца, хрома и алюминия, для проведения экзотермической реакции полного окисления компонентов топливно-воздушной смеси. Способ характеризуется тем, что в качестве топливно-воздушной смеси используют смесь побочных продуктов реакции дегидратации этанола с воздухом и/или смесь этих продуктов с любыми горючими углеводородами с числом углеродных атомов от 1 до 15 и воздухом, а в качестве теплоносителя используют псевдоожиженный слой катализатора. Также изобретение относится к реактору. Использование предлагаемого изобретения позволяет эффективно подводить тепло и одновременно полезно использовать побочные продукты реакции и не вступившее в реакцию исходные реагенты. 2 н. и 4 з.п. ф-лы, 1 ил., 8 пр.

Изобретение относится к способу получения этилена в процессе дегидратации этанола при помощи высокоактивных алюмооксидных катализаторов. Описан гранулированный наноструктурированный алюмооксидный катализатор, содержащий в своем составе оксид алюминия, натрий и дополнительно серу, или фосфор, или хлор в следующем количестве, мас.%: натрий 0,005-0,02, сера 0-5, фосфор 0-2,8, хлор 0-2,6. Катализатор имеет бидисперсную пористую структуру, объем микропор составляет от 0,06 до 0,18 см3/г, объем мезопор от 0,2 до 0,32 см3/г, суммарный объем пор 0,25-0,55 см3/г, средний диаметр находится в диапазоне от 3-5,5 нм при удельной поверхности катализатора от 200 до 350 м2/г. Оксид алюминия представляет собой смесь γ-Al2O3, χ-Al2O3 и рентгеноаморфной фазы оксида алюминия в следующем соотношении, мас.%: χ-Al2O3 и рентгеноаморфная фаза 60-70, γ-Al2O3 30-40. Описан способ приготовления этого катализатора и способ получения этилена с применением этого катализатора. Технический результат - упрощение технологии приготовления катализатора и увеличение выхода этилена. 3 н. и 10 з.п. ф-лы, 16 пр., 3 табл.

Изобретение относится к радиотехнике, в частности к антенным устройствам, и может быть использовано в системах радиопеленгации и радиосвязи различного назначения. Технический результат - повышение точности определения координат и помехозащищенности. Для этого осуществляют заданное размещение излучателей антенной решетки, формируют диаграммы направленности с низким уровнем боковых лепестков и образуют антенную решетку, при этом заданное размещение и формирование излучателей антенной решетки осуществляют в пространстве по геометрической форме решетки различные пространственные распределения излучателей антенной системы: двойные гексагональные структуры, волнообразные и гребенчатые структуры, при изгибе прямоугольного или круглого раскрыва и другие законы размещения элементов, при которых получается более равномерное боковое излучение с возможностью обеспечения контроля их амплитудно-фазового распределения и эквидистантного размещения диаграммы направленности антенны при сохранении энергетических характеристик антенной решетки, таких как коэффициент направленного действия, коэффициент усиления и энергетический потенциал. 2 з. п. ф-лы, 6 ил.

Изобретение относится к оксидным ванадийтитановым катализаторам, используемым для получения никотиновой кислоты путем газофазного окисления -пиколина кислородом, и способам получения никотиновой кислоты с использованием данных катализаторов

 


Наверх