Патенты автора Наумов Александр Сергеевич (RU)

Изобретение относится к радиотехнике и может быть использовано в многопозиционных системах для определения местоположения объектов, использующих источники радиоизлучения (ИРИ) с кодовым и временным разделением каналов. Техническим результатом является разработка разностно-дальномерного (РД) способа определения местоположения заданного объекта за счет его визуального выделения из совокупности объектов с привязкой к фрагменту контролируемого района. В заявленном способе на подготовительном этапе устанавливают видеокамеру (ВК), местоположение которой обеспечивает получение видеоинформации со всех мест контролируемого района (КР), определяют ее координаты (х, у, z)BK, задают максимальные углы обзора ВК по вертикали и горизонтали фокусное расстояние ƒ, коэффициент усиления z, разрешение кадра видеопотока (W, H)кд, размеры сенсора ВК (W, H)сен и контролируемого объекта (W, H)об, определяют исходную ориентацию ВК: азимут АВК и угол места ЕВК, а в процессе работы рассчитывают расстояние ℓ между ВК и ИРИ, оптимальный уровень увеличения zop, определяют ширину FOVθ и высоту FOVh области пространства, попадающего в кадр, азимут АИРИ и угол места ЕИРИ ИРИ относительно позиции ВК, вычисляют разницу по азимуту ΔА и углу места ΔЕ между точкой наведения ВК и позицией ИРИ, определяют расстояние по горизонтали ΔW и вертикали ΔН между положением ИРИ и точкой наведения ВК, находят ширину Wпр и высоту Нпр проекции объекта с ИРИ на видеокадре, рассчитывают смещение проекции объекта с ИРИ ΔWпр и ΔНпр, определяют местоположение объекта с ИРИ (хпр, упр) на видеокадре, на основе параметров ΔА, ΔЕ и zop настраивают видеокамеру, а используя видеоизображение объекта с ИРИ на основе (Wпр, Нпр) и (хпр, упр), осуществляют идентификацию и уточнение его местоположения с привязкой к фрагменту КР. 3 з.п. ф-лы, 13 ил.

Изобретение относится к радиотехнике и может быть использовано в многопозиционных радиотехнических системах для определения координат заданного источника радиоизлучения (ИРИ) с кодовым и временным разделением каналов. Технический результат - повышение оперативности при развертывании измерителя и его перемещениях в условиях отсутствия доступности сигналов глобальной навигационной спутниковой системы (ГНСС). В заявленном способе осуществляют определение на подготовительном этапе местоположения только центрального пункта приема и обработки (ЦППО) и опорного периферийного пункта приема (ППП) ППП1 в ручном режиме. В состав каждого ЦППО и ППП1 дополнительно вводят по передатчику, используемому для излучения контрольных сигналов. Определяют расстояние dЦППО,k от ЦППО до всех K ППП, k=1, 2, …, K, путем излучения передатчиком ЦППО контрольных сигналов в направлении каждого ППП и приеме от них ретранслированного сигнала с последующим определением их задержки Tk, dЦППО,k=Tk⋅с, где с - скорость света. Аналогично определяют расстояние d1,k от опорного ППП1 до K - 1 ППП, k=2, 3, …, K, а измерение задержки сигнала и значения d1,k осуществляют на ЦППО. На основе теоремы косинусов определяют углы в формируемых треугольниках: ЦППО – ППП1 - ПППk, определяют координаты k-го ПППk (х,у)k в локальной системе координат. 14 ил.

Группа изобретений относится к радиотехнике и может быть использована в многопозиционных радиотехнических системах для определения координат заданных источников радиоизлучения (ИРИ) с кодовым и временным разделением каналов. Достигаемый технический результат - сокращение временных затрат на определение местоположения заданного ИРИ при сохранении точностных характеристик в условиях многолучевости и работы на одной частоте нескольких ИРИ с временным или кодовым разделением каналов. Технический результат в первом разностно-дальномерном способе (РДС) достигается за счет того, что на подготовительном этапе контролируемый район (КР) разбивают на равные исходные элементарные объемы (ЭО) со сторонами а, b и с, определяют координаты центров исходных ЭО (Xi, Yj, Zk), на основе которых формируют объемную матрицу координат Р. Для каждого элемента (Xi, Yj, Zk) матрицы Р и всех N измерительных баз определяют эталонные значения разности времени прихода сигнала на центральный пункт приема и обработки (ЦППО) и n-й периферийный пункт приема (ПППn) τi,j,k,n. На их основе формируют N эталонных матриц Mn, n=1, 2, …, N, а в процессе работы вычисляют взаимнокорреляционную функцию (ВКФ) сигналов Rn[τ], принятых на n-м ППП и ЦППО и их средние значения для каждого исходного ЭО на интервале времени где s - время, за которое радиоволна проходит расстояние, равное диагонали исходного ЭО. Формируют N корреляционных матриц Фn путем замены τi,j,k,n на соответствующие им измеренные значения значения последних суммируют по всем N измерительным базам определяют предварительное местоположение ИРИ с координатами (Xi, Yj, Zk), соответствующее максимальному значению элемента матрицы измерений Задают уточненный КР со сторонами a, b и с и центром (Xi, Yj, Zk), делят уточненный КР на ЭО со сторонами а', b' и с', а' << a, b' << b, с' << с, определяют координаты их центров формируют уточненную матрицу координат Р' и N уточненных эталонных матриц измеряют средние значения ВКФ для каждого уточненного ЭО, формируют N уточненных корреляционных матриц и уточненную матрицу измерений и определяют наиболее вероятные координаты заданного ИРИ, значение которых соответствует максимальному значению элемента уточненной матрицы измерений Положительный результат во втором РДС, улучшающий характеристики первого РДС, достигается благодаря определению необходимого количества этапов детализации КР, вычислению для них всех эталонных параметров временных интервалов s, s' n s". Технический результат в устройстве достигается благодаря введению новых элементов в центральный пост обработки: второго вычислителя, блока формирования матрицы координат Р, блока формирования эталонных матриц Мn, сумматора, блока формирования корреляционных матриц Фn, блока принятия решения и блока сравнения с соответствующими связями. 3 н. и 2 з.п. ф-лы, 22 ил., 1 табл.

Группа изобретений относится к радиотехнике и может быть использована в многопозиционных радиотехнических системах для определения координат заданного источника радиоизлучения (ИРИ) с кодовым и временным разделением каналов. Достигаемый технический результат - повышение точности местоопределения заданного ИРИ. Технический результат в способе достигается благодаря определению на подготовительном этапе центров элементарных участков контролируемого района (Xi, Yj), на основе которых формируют матрицу координат, для каждого элемента (Xi, Yj) всех K измерительных баз «периферийный пункт приема (ППП) - центральный пункт приема и обработки (ЦППО)», определяют эталонные значения разности времени приема сигнала τi,j,k, формируют K эталонных матриц, элементами каждой из которых является соответствующее координатам (Xi, Yj) эталонное значение τi,j,k, на основе рассмотренной совокупности операций по запоминанию и анализу принимаемых сигналов выделяют излучения только заданного ИРИ, вычисляют K взаимно-корреляционных функций (ВКФ) для соответствующих измерительных баз, формируют K корреляционных матриц путем замены элементов τi,j,k эталонных матриц на соответствующие им измеренные значения ВКФ, суммируют полученные корреляционные матрицы, за наиболее вероятное расположение заданного ИРИ принимают координаты точки (Xi, Yj), соответствующей максимальному значению элемента суммарной корреляционной матрицы. Устройство, реализующее способ, для достижения указанного технического результата дополнительно содержит введенные в центральный пост обработки четыре аналого-цифровых преобразователя, блок управления, тракт анализа, четыре блока памяти, тактовый генератор, вычислитель, блок формирования корреляционных матриц, блок формирования эталонных матриц, блок формирования матриц координат, сумматор и блок принятия решения с соответствующими связями. 2 н. и 1 з.п. ф-лы, 23 ил.

Изобретение относится к радиотехнике и может быть использовано в многопозиционных радиотехнических системах для определения координат заданного источника радиоизлучения (ИРИ) с кодовым и временным разделением каналов. Техническим результатом является разработка разностно-дальномерного (РД) способа определения местоположения заданного ИРИ в пространстве с временным или кодовым разделением каналов, обеспечивающих повышение точности их местоопределения. Технический результат в РД способе достигается благодаря определению на подготовительном этапе центров элементарных объемов контролируемого района (Xi, Yj, Zk), на основе которых формируют матрицу координат, для каждого элемента (Xi, Yj, Zk) всех N измерительных баз «периферийный пункт приема (ППП) - центральный пункт приема и обработки (ЦППО)» определяют эталонные значения разности времени приема сигнала τi,j,k,n, формируют N эталонных матриц, элементами каждой из которых является соответствующее координатам (Xi, Yj, Zk) эталонное значение τi,j,k,n, а в процессе работы на основе рассмотренной совокупности операций по запоминанию и анализу принимаемых сигналов выделяют излучения только заданного ИРИ, вычисляют N взаимно корреляционных функций (ВКФ) для соответствующих измерительных баз, формируют N корреляционных матриц путем замены элементов τi,j,k,n эталонных матриц на соответствующие им измеренные значения ВКФ, суммируют полученные корреляционные матрицы, а за наиболее вероятное расположение заданного ИРИ принимают координаты точки (Xi, Yj, Zk), соответствующей максимальному значению элемента суммарной корреляционной матрицы. 2 з.п. ф-лы, 18 ил., 2 табл.

Изобретения относятся к радиотехнике и могут быть использованы для защиты от средств воздушного и космического радиомониторинга. Достигаемый технический результат - обеспечение затруднения определения местоположения (ОМП) земной станции (ЗС). Указанный результат достигается тем, что выделяют I соседних с используемым спутников-ретрансляторов (CP), имеющих сходные характеристики, определяют координаты ЗС и I выбранных CP, направление на эти CP, вычисляют расстояние между ЗС и CP, значение необходимой для излучения мощности помехового сигнала в направлении каждого CP, ориентируют I дополнительных антенн в направлении соответствующих CP, а в качестве активной маскирующей помехи используют отличные между собой задержанные по псевдослучайному закону и оптимизированные по мощности сигналы ЗС. Устройство активной радиомаскировки местоположения ЗС содержит разветвитель, блок буферных каскадов, I-канальный радиопередатчик, блок направленных антенн, генератор псевдослучайной последовательности, блок расчета мощности сигнала, блок расчета дистанции связи и четыре входных шины с соответствующими связями. 2 н. и 1 з.п. ф-лы, 10 ил.

Группа изобретений относится к радиотехнике и может быть использована в многопозиционных радиотехнических системах для определения координат заданных источников радиоизлучения (ИРИ) с кодовым и временным разделением каналов. Достигаемый технический результат - определение местоположения ИРИ в условиях работы на одной частоте нескольких ИРИ с временным или кодовым разделением каналов. Технический результат в разностно-дальномерном способе достигается за счет одновременного запоминания в центральном пункте приема и обработки (ЦППО) на интервале времени Δt сигналов ИРИ, принятых на периферийных пунктах приема (ППП) и ЦППО, демодулирования принятых на ЦППО сигналов ИРИ, поиска и анализа преамбулы и заголовка обнаруженного фрейма, определения начала МАС-фрейма и его длительности, адреса пользователя, сравнения адреса пользователя обнаруженного фрейма с заданным для поиска, при их совпадении измерения разности времени приема ретранслированных сигналов и принятых в ЦППО на интервале времени от начала преамбулы до конца МАС-фрейма. Технический результат в устройстве достигают благодаря введению новых элементов в центральный пост обработки: четырех аналого-цифровых преобразователей, блока управления, тракта анализа, четырех блоков памяти и генератора тактовых импульсов с соответствующими связями. 2 н. и 1 з.п. ф-лы, 13 ил.

Изобретения относятся к радиотехнике и могут быть использованы для определения местоположения источников радиоизлучения (ИРИ) с летно-подъемного средства (ЛПС) угломерным способом. Достигаемый технический результат - повышение точности определения координат ИРИ. Технический результат достигается путем исключения из расчетов заведомо ложных пеленгов путем вычисления для каждого из их совокупности ψj m-й локальной зоны угловых расстояний на сфере δj между полученными пеленгами и ранее найденными координатами ИРИ, определение порогового уровня фильтрации пеленгов σj, равного среднеквадратическому отклонению набора пеленгов ψj полученных угловых расстояний δj. Благодаря использованию σj удается отбросить пеленги, угловые расстояния на сфере которых δj его превышают. Устройство определения координат ИРИ, реализующее способ, содержит двухканальный фазовый интерферометр, десять вычислителей, восемь блоков памяти, радионавигатор, устройство угловой ориентации ЛПС, блок сравнения, блок принятия решения, два блока расчета координат, блок расчета пороговых уровней, селектор пеленгов, одиннадцать входных установочных шин и выходную шину, определенным образом соединенных между собой. 2 н. и 2 з.п. ф-лы, 18 ил.

Изобретения относятся к радиотехнике и могут быть использованы для определения местоположения источников радиоизлучения (ИРИ) с летно-подъемного средства (ЛПС) угломерным способом. Достигаемым техническим результатом является сокращение временных затрат на определение координат ИРИ. Технический результат достигается путем выполнения расчетов в геоцентрической системе координат, не требующим измерения угла места. Выполнение этой операции осуществляют аналитически, что и определяет высокую скорость вычислений. Кроме того, избирательная (в два этапа) обработка входного потока данных позволяет дополнительно повысить скорость их анализа при сохранении точностных характеристик. Устройство определения координат ИРИ, реализующее способ, содержит двухканальный фазовый интерферометр, девять вычислителей, восемь блоков памяти, радионавигатор, устройство угловой ориентации ЛПС, блок сравнения, блок принятия решения, блок расчета координат, одиннадцать входных установочных шин и выходную шину, определенным образом соединенные между собой. 2 н. и 1 з.п. ф-лы, 17 ил., 2 прил.

Изобретения относятся к радиотехнике и могут быть использованы для определения местоположения источника радиоизлучения (ИРИ) с летно-подъемного средства (ЛПС) угломерно-дальномерным способом. Достигаемый технический результат - повышение точности местоопределения ИРИ при незначительном возрастании временных затрат. Технический результат достигается благодаря дополнительному измерению угла места на ИРИ и полному учету пространственной ориентации ЛПС. Данный подход позволил перейти от «расчета всех возможных значений корреляции и применения их при формировании элементов матрицы измерений», каждый из которых соответствует определенной элементарной зоне привязки, на подход «расчет значений корреляций для каждой элементарной зоны привязки». Устройство определения координат ИРИ, реализующее способ, содержит блок определения пространственных параметров, первый, второй, третий, четвертый и пятый вычислители-формирователи, первый и второй блоки памяти, радионавигатор, устройство угловой ориентации, блок измерения первичных пространственно-информационных параметров, генератор синхроимпульсов, блок оценивания, блок определения координат и блок индикации, определенным образом соединенные между собой. 2 н. и 2 з.п. ф-лы, 11 ил.

Изобретения предназначены для определения пеленга и угла места источника априорно неизвестного сигнала. Достигаемый технический результат - сокращение временных затрат на оценивание пространственных параметров сигналов - азимута и угла места. Сущность заявляемого способа заключается в последовательном синхронном преобразовании высокочастотных сигналов одновременно со всех N антенных элементов (АЭ) в цифровую форму, одновременном измерении в каждом частотном поддиапазоне на совпадающих интервалах времени комплексных спектров пар сигналов для всех используемых в обработке N·(N-1)/2 пар АЭ, определении свертки комплексно-сопряженых спектров, одновременном получении разности фаз радиосигналов Δφ1,h,изм(fν) для всех N·(N-1)/2 пар АЭ и каждого частотного поддиапазона путем преобразования Фурье, формировании и запоминании эталонных разностей фаз сигналов для всех возможных направлений прихода радиосигнала, вычислении значения функции дисперсии невязок разности фаз по всем угловым параметрам, формировании для каждой используемой пары АЭ на основе значений Δφ1,h,изм(fν) конечного семейства конусов возможных направлений на источник и набора непересекающихся окружностей направлений, запоминании точек пересечения окружностей направлений от разных пар АЭ, определении значений функции дисперсии невязок разностей фаз F(fν) для точек пересечения окружностей направлений и минимальной среди них minH(fν), локальной оптимизации minH(fν) путем сравнения с ближайшими к ней значениями H(fν), определении наиболее вероятного направления прихода радиосигнала по наименьшему значению minH(fν)опт. В пеленгаторе, реализующем способ, дополнительно введены блок формирования конусов и окружностей направлений, блок определения точек пересечения окружностей направлений и блок поиска глобального экстремума, соединенные определенным образом между собой и остальными элементами заявленного пеленгатора. 2 н.п. ф-лы, 8 ил., 1 табл.

Изобретение относится к способам резки хрупких неметаллических материалов, в частности кварцевого стекла и других хрупких термостойких материалов. Техническим результатом настоящего изобретения является расширение возможностей способа резки хрупких неметаллических материалов за счет осуществления резки кварцевого стекла и других хрупких термостойких материалов методом ЛУТ. Способ резки хрупких неметаллических материалов включает нанесение локального надреза на краю заготовки по линии реза, нагрев линии реза лазерным пучком и последующее охлаждение зоны нагрева с помощью хладагента при относительном перемещении материала и лазерного пучка с хладагентом. Для обеспечения резки кварцевого стекла и других термостойких материалов нагрев заготовки лазерным пучком осуществляют перед нанесением локального надреза, а нанесение локального надреза осуществляют в зоне воздействия лазерного пучка или сразу за этой зоной. Нанесение надреза осуществляют при относительном перемещении заготовки со скоростью v с временной задержкой по отношению к началу нагрева материала лазерным пучком t, который определяется равенством t=AK/v, где А - половина размера эллиптического пучка в направлении движения или радиус круглого пучка, к - принимает значения в диапазоне 1-2,5. 1 табл., 5 ил.

Изобретение относится к способам обработки материала, в частности к способам притупления острых кромок изделий из стекла и других хрупких неметаллических материалов

Изобретение относится к радиотехнике и может быть использовано в охранной технике

Изобретение относится к способам резки хрупких неметаллических материалов, в частности приборных пластин из таких материалов, как стекло, керамика, кварц, сапфир, кремний, арсенид галлия, карбид кремния и другие материалы

Изобретение относится к радиотехнике и может быть использовано для угловой ориентации летательных аппаратов

Изобретение относится к судостроению и относится к корпусам судов, включающих поперечные переборки с набором

 


Наверх