Патенты автора Новиков Илья Николаевич (RU)

Изобретение относится к области энергетики. Устройство для сжигания топлива содержит вихревую противоточную жаровую трубу, завихритель, канал выхода продуктов сгорания, устройства подачи топлива и воспламеняющее устройство. Устройство для сжигания топлива содержит три типа устройств подачи топлива. Первый тип устройств подачи топлива выполнен в виде струйных форсунок, расположенных в завихрителе, выходные отверстия проточных каналов которых перпендикулярны к торцевой стенке завихрителя, причем выходные отверстия каналов выходят в минимальном сечении проточных каналов тангенциального соплового закручивающего аппарата. Второй тип устройств содержит не менее одной центробежной форсунки. Третий тип устройств выполнен в виде патрубка, установленного в аксиальном отверстии на торцевой стенке жаровой трубы. Второй и третий типы устройств подачи топлива размещены в противоположном от завихрителя конце жаровой трубы. Изобретение обеспечивает повышение надежности запуска и устойчивую работу на жидком, газообразном и забалластированном как негорючими компонентами, так и водой топливе, а также топливе, включающем измельченные твердые горючие компоненты и их смеси с водой. 4 ил.

Изобретение относится к области переработки твердых углеродосодержащих материалов и может найти применение при получении не только активированного угля, но и для получения синтез-газа и синтез-топлив в различных отраслях промышленности. Способ для переработки углеродосодержащего сырья включает нагрев подготовленного углеродосодержащего сырья до температуры карбонизации в атмосфере, формирующейся и движущейся в режиме противотока с подаваемым сырьем и образующимся пиролизным газом, активацию с помощью активирующего агента, выгрузку горячего угля и его охлаждение, при котором к перерабатываемому сырью, движущемуся по винтовому каналу с постепенно уменьшающейся осевой составляющей скорости, осуществляют одновременно подвод теплоты двумя потоками продуктов сгорания, а получаемый пиролизный газ после карбонизации сырья и активации угля отбирают для получения продуктов сгорания и активирующего агента, процессы карбонизации и активации осуществляют раздельно в карбонизаторе и активаторе, подвод тепла продуктов сгорания в карбонизаторе осуществляют от двух или более сильно закрученных высокотемпературных потоков камер сгорания, движущихся в противотоке осевой скорости перерабатываемого сырья, при этом формирование активирующего агента осуществляется в трех котлах-утилизаторах путем поступления продуктов сгорания из кольцевого канала карбонизатора в котел-утилизатор для нагрева воды, а продукты сгорания из цилиндрического канала карбонизатора поступают в котел-утилизатор для получения водяного пара из горячей воды, подаваемой из котла-утилизатора для нагрева воды, образованный водяной пар в котле-утилизаторе водяного пара поступает в котел-утилизатор перегрева водяного пара. Изобретение содержит установку для реализации способа для переработки углеродосодержащего сырья. Техническим результатом изобретения является повышение энергетической эффективности технологического процесса переработки углеродосодержащего сырья за счет снижения расхода энергетических ресурсов энергоносителей. 2 н.п. ф-лы, 2 ил.

Изобретение относится к области термической переработки и утилизации твердых углеводородных отходов и может найти применение в печах, газогенераторах и установках термического уничтожения твердых углеводородных отходов, включая медицинские и биологические отходы. Техническим результатом является расширение области применения способа и устройства, обеспечение высокой эффективности рабочего процесса, обеспечение непрерывной работы устройства, повышение эффективности системы очистки от вредных выбросов в атмосферу, повышение экономичности процесса. Способ включает сжигание отходов, дожигание газообразных продуктов сгорания, последующую обработку для связывания вредных веществ в камере декарбонизации, пропускание через теплообменник, последующую утилизацию продуктов сгорания в котле. При этом в первую очередь запускают камеру дожигания, после выхода камеры дожигания на рабочий режим запускают в работу реактор с предварительно загруженными в него отходами, сопловой закручивающий аппарат камеры дожигания создает разрежение, и газообразные продукты сжигания перемещаются из реактора в камеру дожигания, во время сжигания отходов в реакционной камере, при закрытом отверстии в нижней части шлюзовой загрузочной камеры, в шлюзовую загрузочную камеру загружают очередную порцию отходов, после чего закрывают отверстие в верхней части шлюзовой загрузочной камеры, открывают отверстие в нижней части шлюзовой загрузочной камеры, и отходы падают в реакционную камеру, дожигание газообразных продуктов сгорания осуществляют в вихревой противоточной камере сгорания, с подачей в сопловой закручивающий аппарат нагретого в теплообменнике воздуха, газообразных продуктов сгорания, выводимых из печи, и дозируемой подачей химических реагентов, при этом осуществляют вывод из камеры дожигания очищенных продуктов сгорания для дополнительной очистки в камере декарбонизации и последующую подачу очищенных продуктов сгорания в теплообменник для нагрева воздуха, а смесь твердой фракции и часть продуктов сгорания выводят из камеры дожигания и подают в циклон, откуда очищенные от твердой фракции продукты сгорания подают в реактор в качестве газифицирующего агента, а твердую фракцию аккумулируют в бункере. Охарактеризована установка для реализации описанного способа. 2 н. и 2 з.п. ф-лы, 1 ил., 2 табл.

Изобретение относится к области термохимической переработки и утилизации твердых веществ, содержащих углеводороды, и может найти применение в установках газификации веществ, содержащих углеводороды. Техническим результатом является повышение эффективности технологического процесса. Способ включает ввод вещества и газифицирующего агента в реакционную камеру, осуществление процессов формирования газифицирующего агента, нагрева, термического разложения, газификации вводимого вещества, очистки и разделения продуктов газификации. Ввод вещества и процессы газификации, включающие процессы формирования высокотемпературного газифицирующего агента, нагрев, термическое разложение, газификацию вещества с получением парогазовой смеси, ее очистки, осуществляют в две стадии. Первую стадию осуществляют не менее чем в двух первичных реакционных камерах, а вторую стадию осуществляют в основной реакционной камере. Процессы, осуществляемые в первичных реакционных камерах, реализуют в сформированных высокотемпературных сильно закрученных радиальных потоках, в поле с высоким радиальным градиентом статического давления, движущихся с ростом осевой составляющей скорости. Процессы, осуществляемые в основной реакционной камере и в устройствах формирования газифицирующих агентов, реализуют в сформированных высокотемпературных сильно закрученных потоках, движущихся с противоположными осевыми скоростями, в поле с высоким радиальным градиентом статического давления, высокоразвитой анизотропной турбулентностью и интенсивными акустическими колебаниями. 2 н. и 12 з.п. ф-лы, 1 табл., 6 ил.

Изобретение относится к области термической переработки и утилизации веществ, содержащих углеводородные компоненты, и может найти применение в установках термического уничтожения твердых отходов, в печах и газогенераторах, в устройствах, использующих сжигание и утилизацию энергии низкокалорийного газа, доменного газа, синтез газа, парогазовой смеси и пылевидного топлива. Способ термической переработки и утилизации углеродосодержащих веществ осуществляется путем сжигания низко потенциального газообразного топлива, с последующей утилизацией энергии продуктов сгорания в турбине и теплообменном аппарате, при давлении газа и воздуха ниже атмосферного во всех элементах проточной части. Так, способ включает газификацию топлива посредством устройства для газификации, с последующим сжиганием полученной парогазовой смеси в камере сгорания, с получением продуктов сгорания, поступающих в турбину для преобразования энергии продуктов сгорания в механическую энергию, и дальнейшим преобразованием в электрическую энергию, при этом, оставшаяся часть тепловой энергии из турбины поступает в теплообменный аппарат для нагрева воздуха, поступающего в камеру сгорания. Причём, способ осуществляют при давлении в газовом тракте ниже атмосферного, при этом продукты сгорания удаляются в атмосферу посредством компрессора, устанавливаемого после теплообменного аппарата. Также часть воздуха из теплообменного аппарата поступает в устройство для газификации в качестве газифицирующего агента. Техническим результатом, достигаемым в заявленном изобретении, является разработка способа термической переработки и утилизации углеродосодержащих веществ, позволяющего повысить экологическую безопасность и эффективность реализации способа, за счет осуществления способа при низком атмосферном давлении в проточной части устройства. 1 ил., 1 табл.

Изобретение относится к области теплоэнергетики, а именно к способу сжигания угля, углеродосодержащих отходов производств из разных областей промышленности и других видов твердого топлива. Устройство для сжигания измельченного твердого топлива состоит их двух ступеней, первая ступень выполнена в виде газогенератора, а вторая ступень выполнена в виде камеры дожигания, блок газификации мелкой фракции содержит размещенные соосно первичную противоточную и вторичную противоточную жаровые трубы, размещенную между ними камеру турбулизации, содержащую жаровую трубу, диаметр которой больше диаметров первичной противоточной и вторичной противоточной жаровых труб, каждая первичная противоточная и вторичная противоточная жаровые трубы содержат тангенциальные сопловые закручивающие аппараты, формирующие закрутку потоков с противоположным направлением векторов угловой скорости, при этом первичная противоточная жаровая труба в плоскости тангенциального соплового закручивающего аппарата содержит патрубок, соосный ее центральной оси, вторая ступень содержит цилиндрический корпус, жаровую трубу, тангенциальный сопловой закручивающий аппарат, выходной патрубок с центральным входным отверстием, расположенным в плоскости тангенциального соплового закручивающего аппарата, и выходным отверстием, предкамеру с входными и выходными отверстиями, при этом тангенциальный сопловой закручивающий аппарат формирует закрутку потока, совпадающую с направлением вектора угловой скорости закрутки потока в первичной противоточной жаровой трубе, патрубки подачи воздуха, отвода смеси остатков твердых частиц и газа, причем патрубок подачи воздуха сообщается с тангенциальным сопловым закручивающим аппаратом, а патрубок отвода смеси сообщается с проточной частью жаровой трубы в противоположном от тангенциального соплового закручивающего аппарата конце, при этом патрубки установлены тангенциально внутренней поверхности корпуса так, что векторы угловых скоростей потока воздуха и потока смеси остатков твердых частиц и газа совпадают по направлению с вектором угловой скорости воздуха на выходе из соплового закручивающего аппарата. Технический результат - повышение эффективности осуществления рабочего процесса сжигания топлива путем повышения производительности, экономических и экологических характеристик, расширения вида сжигаемого топлива и повышения надежности рабочего процесса. 2 н.п. ф-лы, 6 ил.

Изобретение относится к области очистки отработавших газов двигателя внутреннего сгорания. Устройство содержит источник электрического поля, присоединенный к бортовому источнику электроэнергии, высоковольтные электроды, присоединенные к выходам источника электрического поля. Устройство размещено за выхлопным коллектором и выполнено в виде вихревого эжектора, содержащего вихревую камеру с тангенциальным сопловым закручивающим аппаратом и электрическую разрядную камеру с высоковольтными электродами. Электроды установлены на внешней торцевой стенке щелевого конфузора. Вихревая камера соединена с тангенциальным сопловым закручивающим аппаратом и выходным патрубком, сообщающимся с атмосферой. Тангенциальный сопловой закручивающий аппарат содержит два входных патрубка, один из которых соединен с выхлопным коллектором, а другой патрубок расположен на торцевой стенке, в приосевой зоне, соосно центральной оси вихревой камеры, с выполненным выходным отверстием, диаметр которого меньше диаметра вихревой камеры, и соединен с электрической разрядной камерой вихревого типа с тангенциальным сопловым закручивающим аппаратом, выполненной в виде осесимметричного щелевого конфузора, соединенного в периферийной части с атмосферой. В приосевой части щелевой конфузор сопрягается с патрубком, выходящим в вихревую камеру. Предложенное устройство позволяет осуществить эффективную очистку отработавших газов путем использования их потенциальной энергии. 2 з.п. ф-лы, 3 ил.

Изобретение относится к вакуумной технике и может быть использовано для получения пучков ионов при разделении изотопов или масс-спектрометрии. Высокотемпературный источник поверхностной ионизации из монокристаллического материала с объемно-центрированной кубической решеткой снабжен цилиндрическим сквозным отверстием, которое выполнено вдоль кристаллографического направления [111] монокристалла. В качестве монокристаллического материала с объемно-центрированной кубической решеткой могут быть выбраны материалы из ряда тугоплавких материалов, таких как: вольфрам, тантал, молибден, ванадий. Технический результат – повышение эффективности источника поверхностной ионизации без увеличения его рабочей температуры и геометрических размеров. 2 з.п. ф-лы.

 


Наверх