Патенты автора Попов Анатолий Борисович (RU)

Изобретение относится к области приборостроения, в частности к гироскопам, и предназначено для применения в навигационных приборах. Гироскоп содержит корпус, вращающуюся камеру и установленный в камере на упругом подвесе ротор, при этом ротор выполнен в виде двух маховиков одинакового диаметра, соединенных в центре перемычкой меньшего диаметра, подвес выполнен в виде направленной вдоль главной оси ротора нити и мембраны, расположенной по экватору перемычки и соединяющей ее с камерой. Технический результат заключается в повышении точности и чувствительности гироскопов и уменьшении их габаритов. 5 з.п. ф-лы, 2 ил.

Изобретение может быть использовано в акселерометрах или гироскопах для измерения малых сдвигов пробного тела при действии ускорений. Прямой преобразователь перемещений для микромеханических приборов состоит из корпуса и подвижной части, выполненной с возможностью перемещения в корпусе по направлению действия силы. Для измерения взаимного положения корпуса и подвижной части в направлении действия силы на них укреплены зонд и подложка основного туннельного микроскопа, причем один из этих элементов установлен на каретке, выполненной с возможностью перемещения в плоскости, перпендикулярной направлению действия силы. Для стабилизации в этой плоскости взаимного положения зонда и подложки основного туннельного микроскопа введены дополнительные туннельные микроскопы управления кареткой. Технический результат - повышение чувствительности прямого преобразователя перемещений. 1 ил.
Изобретение относится к области геодезического приборостроения, в частности к гравиметрам, и предназначено для определения абсолютного значения силы тяжести на подвижном основании. Технический эффект, заключающийся в повышении точности измерения ускорения силы тяжести в морских условиях, достигается за счёт того, что в относительном гравиметре имеются две системы обратной связи, работающие на два двигателя, но управляемые одним датчиком положения - туннельным микроскопом. Одна из них - система стабилизации с относительно большой постоянной времени. Она управляет через абсолютный гравиметр первым двигателем на частотах изменения УСТ. Другая - следящая система с меньшей постоянной времени управляет вторым двигателем через свой усилитель на частотах качки. Пробное тело относительного гравиметра размещено на закрепленной по контуру упругой мембране, изготовленной из материала с высоким внутренним демпфированием. 1 ил.

Изобретение относится к геофизическим исследованиям и может быть использовано для нахождения небольших аномалий силы тяжести при морских измерениях. Технический эффект, заключающийся в повышении точности измерений силы тяжести на подвижном объекте, повышении производительности измерений гравитационного поля, а также в точности навигации по нему, достигается за счёт того, что два абсолютных гравиметра неподвижно устанавливают на объекте в точках с известным расстоянием между ними, в тех же точках устанавливают акселерометры с горизонтальными осями чувствительности, в сигналах гравиметров и акселерометров выделяют вторую гармонику колебаний качки объекта, по ней рассчитывают вертикальные составляющие поступательных ускорений качки, которые вычитают из сигналов гравиметров, полученные после вычитания поступательных ускорений угловой качки сигналы гравиметров складывают и вычитают, получая сигналы суммы и разности, по расстоянию между точками установки гравиметров и скорости движения объекта определяют необходимое для преодоления этого расстояния время и вычисляют возникший за это время сдвиг фазы орбитального движения, подставив сдвиг фаз в сигнал разности, рассчитывают параметры орбитального движения, вычитают сигнал ускорения орбитального движения из сигнала суммы и получают величину мгновенного ускорения силы тяжести, которую усредняют. 2 ил.

Изобретение относится к области геодезического приборостроения, в частности к системам для определения формы Земли, и предназначено для определения уклонений отвесной линии на подвижном основании. Технический эффект, заключающийся в повышении точности измерения уклонений отвесной линии и снижении требований к гиростабилизатору, вплоть до его исключения из астрогеодезического комплекса при работе на подвижном основании, достигается за счёт того, что на корпус зенитного телескопа установлен абсолютный гравиметр, показания которого при вертикальном положении оптической оси паспортизированы. 1 ил.

Изобретение относится к области гравиметрии и может быть использовано для измерения абсолютных значений ускорения свободного падения на движущихся объектах. Сущность: гравиметр содержит одно или два пробных тела, имеющих по два уголковых отражателя, и баллистический блок. Баллистический блок представляет собой вращающееся вокруг горизонтальной оси кольцо, на котором закреплены одна или несколько пар диаметрально расположенных кареток с функциями опускания и подхвата пробных тел. Причем баллистический блок выполнен с возможностью обеспечения падения по измеряемой траектории одного или одновременно двух пробных тел и подхвата их в нижнем положении кареткой той же или последующей пары. Технический результат: исключение вертикальных поступательных перемещений кареток, увеличение частоты бросков за счет уменьшения времени холостого хода, обеспечение непрерывности измерений. 2 н.п. ф-лы, 2 ил.

Интерферометр относится к навигационному приборостроению и предназначен для работы на подвижном основании абсолютного гравиметра. Интерферометр содержит пробное тело с уголковым отражателем, опорный и измерительный лучи, совмещаемые в одной точке экрана. На пути измерительного луча установлена оптическая система, направляющая его в точку пересечения с опорным лучом независимо от горизонтального смещения уголкового отражателя. Предложенный интерферометр снимает ограничения на условия плавания и размещение прибора на корабле в процессе абсолютных гравиметрических измерений на море. Технический результат – повышение точности работы гравиметра и улучшение его эксплуатационных характеристик. 1 ил.

Группа изобретений относится к способу построения инерциальных демпфированных систем с произвольным периодом, инвариантным по отношению к маневрированию объекта и инерциальной системе. Для построения инерциальных систем вводят внешнюю информацию об углах наклона объекта относительно вертикали, полученную путем двойного интегрирования угловых ускорений и коррекции углов по сигналам датчика эталонного угла. Инерциальная система содержит датчик угловой скорости, акселерометр, датчик угла наклона относительно вертикали, два интегратора, три масштабирующих устройства, регулируемое звено, соединенные определенным образом. Датчик угла наклона относительно вертикали содержит датчик эталонного угла, измеритель текущих углов, суммирующее устройство, устройство сравнения, вычислитель начальных условий, выключатель, соединенные определенным образом. Обеспечивается невозмущаемость инерциальной системы без привлечения внешней информации о линейной скорости объекта. 2 н. и 3 з.п. ф-лы, 2 ил.

Изобретение предполагается использовать в системах курсоуказания подвижных объектов. Гирогоризонткомпас содержит датчик вертикальной угловой скорости, преобразователь координат, датчик курсового угла и состоящий из первого интегратора, регулируемого звена и второго интегратора замкнутый контур гирогоризонта с первым выходом по углам качки, расположенным на выходе второго интегратора. В контур гирогоризонта введен расположенный между регулируемым звеном и вторым интегратором второй выход по сигналу проекций скорости вращения Земли. В гирогоризонткомпас введен новый замкнутый контур вычисления производных от проекций скорости вращения Земли, состоящий из последовательно соединенных суммирующего устройства, блока азимута, блока производных и фильтра. Второй выход контура гирогоризонта через суммирующее устройство соединен с новым контуром вычисления производных от проекций скорости вращения Земли. Параметры фильтра в новом контуре установлены так, что полезный сигнал на выходе суммирующего устройства от них не зависит. Блок производных соединен с датчиком вертикальной угловой скорости, выход блока азимута является выходом гирогоризонткомпаса по азимуту и подключен к входу преобразователя координат. Два других входа преобразователя соединены с первым выходом контура гирогоризонта и датчиком курсового угла, выход преобразователя координат является выходом гирогоризонткомпаса по курсу. Технический эффект заключается в повышении точности выработки приборного азимута и курса объекта за счет исключения вносимых фильтрами амплитудных и фазовых искажений. 1 ил., 3 табл.

Изобретение относится к геофизическому приборостроению, а именно к гравитационным градиентометрам. Градиентометр состоит из квадруполя и гироблока, размещенных на платформе, стабилизированной в горизонтальной плоскости и вращающейся вокруг азимутального направления. Вращение платформы градиентометра используется для автокомпенсации погрешностей гироазимута. Градиентометр содержит вычислитель с блоком обработки сигнала квадруполя и контуром гировертикали. Второй контур вычислителя позволяет точно определять горизонтальные составляющие скорости вращения Земли, а блок азимута обеспечивает вычисление азимута. В вычислитель также, помимо блока обработки сигналов квадруполя, введены: ячейка индикации перехода сигнала через ноль, блок дифференцирования и индикации знака производной, ячейка «И» с двумя входами и выключатель. Технический результат изобретения заключается в повышении точности и эксплуатационных характеристик гравитационного градиентометра. 5 ил., 2 табл.

Изобретение относится к геофизическому приборостроению, а именно к гравитационным градиентометрам. Гравитационный градиентометр содержит квадруполь с изготовленными в виде стержня и пробных масс гантелями, следящие системы с датчиками перемещений и привод вращения со шпинделем, при этом квадруполь выполнен в виде центрального вала, к которому на радиально расположенных ленточных пружинах присоединены гантели так, что между стержнями гантелей и валом имеются зазоры, на концах гантелей тангенциально установлены легкие консоли, между прикрепленными к разным гантелям консолями оставлены промежутки, в которые установлены датчики перемещений в виде зондов и подложек туннельных микроскопов, центральный вал квадруполя соединен со шпинделем привода вращения, а между приводом и квадруполем установлен металлический экран. Технический результат - повышение точности и помехоустройчивости градиентометра. 1 з.п. ф-лы, 1 табл., 3 ил.

Изобретение относится к области геофизических исследований и касается устройства для определения вертикали места. Устройство содержит чувствительный элемент, в качестве которого используется баллистический гравиметр, который измеряет ускорения свободного падения с помощью пучка непараллельных лазерных лучей. Технический результат заключается в повышении точности измерений. 1 ил.

Изобретение относится к области гравиметрических измерений и касается способа определения абсолютного значения ускорения свободного падения. Измерения проводят баллистическим лазерным гравиметром с помощью нескольких непараллельных лазерных лучей, которые образуют плоскости в виде треугольников. Технический результат заключается в повышении точности измерений. 1 ил.

Изобретение относится к области гравиметрии и может быть использовано для измерения в морских условиях абсолютных значений ускорения свободного падения. Сущность: на корабле устанавливают абсолютный лазерный и относительный гравиметры. Измеряют множество интервалов пути и времени лазерным интерферометром абсолютного гравиметра. Выделяют переменную составляющую сигнала относительного гравиметра. Вырабатывают команду на бросок пробного тела. Причем бросок пробного тела осуществляют при минимальной скорости вертикального перемещения основания, которую вычисляют по интегралу от составляющей сигнала относительного гравиметра, вызванной качкой корабля. Рабочий участок траектории полета пробного тела разбивают на кванты интерференционного сигнала. По разности интервалов времени прохождения соседних квантов вычисляют мгновенные значения суммы ускорений свободного падения и движения основания. Указанные значения осредняют и получают измеренную в броске сумму ускорений. На интервале времени полета пробного тела осредняют переменную составляющую сигнала относительного гравиметра. Среднее значение переменной составляющей вычитают из измеренной в броске суммы ускорений и сохраняют разность как измеренное в броске ускорение свободного падения. Проводят несколько бросков. Осредняют ускорения свободного падения по множеству бросков. По полученному истинному значению ускорения свободного падения корректируют показания относительного гравиметра. Для осуществления способа на основании (4) устанавливают абсолютный гравиметр (1), содержащий катапульту (2) и счетчик интерференционных импульсов (3). Рядом устанавливают относительный гравиметр (5). Оба гравиметра (1, 5) соединены с вычислителем (6). В вычислитель (6) введены блок (7) мгновенных суммарных ускорений, блок (8) среднего суммарного ускорения, фильтр (9), интегратор (10) выработки скорости основания, блок (11) среднего ускорения основания, две схемы сравнения (12, 13), накопитель (14), блок (15) истинного значения ускорения свободного падения и командный блок (16). Технический результат: повышение точности измерения ускорения свободного падения в условиях вертикальных перемещений основания, соизмеримых с длиной траектории полета пробного тела. 2 н.п. ф-лы, 1 ил.

Изобретение относится к области гравиметрии и касается способа выставки в вертикаль лазерного луча баллистического гравиметра. Способ заключается в том, что проводят серию бросков пробного тела при различных наклонах платформы гравиметра, в каждом броске определяют ускорение свободного падения, находят минимальное значение ускорения в серии бросков и соответствующий ему наклон платформы, при этом наклоне фиксируют платформу. Для реализации способа предлагается лазерный баллистический гравиметр, содержащий платформу, акселерометры и двигатели. В гравиметр введена система управления выставкой в вертикаль лазерного луча, содержащая блок соответствия, имеющий структуру матрицы, построчные ячейки которой представляют собой величины измеренных ускорений свободного падения, углы наклона платформы, сигналы управления и выключатели, а столбцы представляют собой ячейки сопоставления. Система управления также содержит общую шину, блок поиска, блок стратегий и сумматор. Технический результат заключается в повышении точности абсолютного измерения ускорения свободного падения, упрощении обслуживания гравиметра и сокращении времени полевых измерений. 2 н.п. ф-лы, 1 ил.

Изобретение относится к области астронавигационных систем, предназначенных для определения стабилизированных угла места и курсового угла на астроориентир, на основании которых определяют поправку курсоуказания и свое местоположение

СЕКСТАН // 2372586
Изобретение относится к области корабельных секстанов, предназначенных для измерения высот светила для определения своего местоположения

 


Наверх