Патенты автора Коркишко Юрий Юрьевич (RU)

Изобретение относится к области измерительных информационных систем и комплексов боевых самолетов и вертолетов, в котором проводится разработка способа оптимального оценивания полного перечня параметров состояния инерциальной навигационной системы (ИНС) и эффективной коррекции измеряемой ей навигационной и пилотажной информации. Способ оптимального оценивания ошибок инерциальной навигационной системы и ее коррекции по неподвижному наземному ориентиру с известными географическими координатами включает угловое сопровождение неподвижного наземного ориентира коррекции (ОК) и дискретное измерение наклонной дальности до него в щадящем для лазерного дальномера из состава обзорно-прицельной системы режиме его работы с частотой излучающих посылок 0,5-1,0 Гц и основан на совместной обработке измеряемых при этом текущих углов визирования ОК и наклонной дальности до него, текущих углов истинного и гироскопического курсов, крена и тангажа объекта и счисленных ИНС географических координат его местоположения и текущей бароинерциальной высоты. При этом в режиме непрерывного углового сопровождения ОК одно-двухсекундные временные интервалы между соседними измерениями дальности до ОК заполняют ее десятигерцовыми расчетными значениями, которые формируют в соответствии с модифицированной, инвариантной к рельефу подстилающей поверхности угломестной процедурой определения наклонной дальности, предполагающей использование текущих бароинерциальной высоты объекта, косинуса угла между географической вертикалью и направлением на ОК, и сформированного по измерениям ОПС опорного значения высоты ОК над уровнем моря, при этом оценивание составляющих абсолютной линейной скорости объекта осуществляют в соответствии с кинематической моделью его движения относительно неподвижного наземного ОК в проекциях на оси инерциальной системы координат. При этом реализуются две параллельно работающие процедуры оптимального оценивания - основная и вспомогательная, первая из которых обеспечивает оценивание расширенного вектора параметров состояния ИНС и последующую коррекцию ее навигационных и пилотажных параметров, а вторая - формирование адекватных с СНС позиционных и скоростных сигналов, используемых в основной процедуре оптимального оценивания в качестве сигналов идеального измерителя. Технический результат изобретения – расширение функциональных возможностей прицельно-навигационного комплекса современного ЛА. 7 ил.

Изобретение относится к области измерительных информационных систем и комплексов боевых летательных аппаратов ЛА. Предложенный способ формирования воздушно-скоростных параметров маневренного объекта заключается в совместной обработке информации, включающей измеряемые системой воздушных сигналов и датчиком углов атаки и скольжения текущие значения модуля воздушной скорости и углов атаки и скольжения, ориентации объекта относительно связанной с ним системы координат, текущее расчетное значение модуля скорости ветра, а также неизвестные, подлежащие оцениванию, функциональные параметры, формируемые по результатам инерциально-доплеровской коррекции углов истинного курса, крена и тангажа объекта и модуля путевой скорости объекта с определяющими его текущую пространственную ориентацию относительно собственной системы координат. Техническим результатом изобретения является расширение функциональных возможностей современной авиационной техники и повышение точности и эффективности ее пилотирования и боевого применения во всех условиях эксплуатации. 11 ил.

Изобретение относится к области измерительных информационных систем и комплексов боевых летательных аппаратов (ЛА). Предложенный способ формирования бароинерциальной высоты и вертикальной скорости заключается в том, что используют сигнал вертикального канала инерциальной навигационной системы, реализуемой в соответствии с дискретной процедурой фильтрации и идентификации Калмана, осуществляют параллельное интегрирование сигнала, измеряемого вертикальным акселерометром, и сравнение результатов интегрирования с обеспечением грубого формирования вертикальной скорости, и обеспечивают расчет в режиме инерциально-доплеровской коррекции. Причем при формировании сигналов измерения и матрицы наблюдения используют кинематические соотношения связи ошибок измерения углов эволюции объекта и ошибок счисления основной тройки навигационных параметров с малыми углами рассогласования реального и опорного трехгранников гироплатформы инерциальной системы навигации (ИНС). Техническим результатом изобретения является разработка высокоточного, пригодного для широкого промышленного применения способа формирования бароинерциальной высоты и вертикальной скорости, синтезированного на основе оптимального комплексирования баровысотомера из состава системы воздушных сигналов и вертикального канала ИНС, функционирующей в режиме ее инерциально-доплеровского оценивания и коррекции. 4 ил.

Изобретение относится к области измерительных информационных систем и комплексов боевых летательных аппаратов ЛА. Предлагаемый защищенный способ привязки к подвижной наземной цели основан на комбинации кинематического метода определения наклонной дальности (КМОД) и модифицированного угломестного способа определения текущей дальности до подвижной наземной цели (МУСОД) и предполагает реализацию оптимальной процедуры инерциально-доплеровского оценивания и коррекции, а также синтез бароинерциального канала формирования абсолютной высоты и вертикальной скорости. Техническим результатом изобретения является расширение функциональных возможностей оптико-электронных прицельно-навигационных комплексов (ОЭПрНК) объектов боевого назначения за счет разработки дополнительного, защищенного способа привязки к подвижной наземной цели, а также повышение точности и эффективности решения боевой задачи (БЗ) за счет разработки альтернативной прогнозу параметров движения цели, унифицированной с режимом привязки процедуры оптимального оценивания на основе модифицированной, инвариантной к рельефу подстилающей поверхности угломестной процедуры расчета наклонной дальности. 9 ил.

Изобретение относится к информационно измерительным комплексам и системам управления боевыми летательными аппаратами (ЛА). Технический результат - расширение функциональных возможностей прицельных систем путем синтеза автоматической процедуры прицеливания по подвижной наземной цели для обеспечения эффективного применения неуправляемых авиационных средств поражения (АСП). Для этого в режиме оптимальной привязки к цели по измерениям обзорно-прицельной и инерциально-доплеровской систем определяют относительные координаты и параметры ее движения в осях географического сопровождающего трехгранника (ГСТ) ONHE. По ее окончании оптимальный фильтр переводят в режим прогноза параметров цели. Параллельно с процедурой привязки и прогноза рассчитывают компоненты скорости ветра и воздушной скорости объекта и цели в проекциях на оси связанной системы координат. По ним определяют угловые поправки на стрельбу и потребные для прицельной сопроводительной стрельбы углы ориентации объекта, используя которые формируют входные сигналы оптимального фильтра-идентификатора, оценивающего необходимые для управления текущие значения углов ориентации объекта относительно постоянно изменяющегося направления прицельной стрельбы и ошибки расчета угловой скорости вращения объекта. Оценки последних используют для коррекции составляющих угловой скорости объекта, а оценки углов отклонения объекта относительно направления прицельной стрельбы - для формирования сигналов управления объектом. За летчиком остается выполнение функции контроля качества управления объектом и нажатие боевой кнопки (БК). 4 ил.

Изобретение относится к области измерительных систем и комплексов боевых летательных аппаратов (ЛА). Технический результат - повышение точности оценивания и краткосрочного прогноза параметров движения цели на основе субоптимальной процедуры ее углового сопровождения в обеспечение эффективного применения неуправляемых авиационных средств поражения (АСП). Для этого оценивание и прогноз параметров цели осуществляют в проекциях на оси лучевой системы координат. Выбор указанной системы координат не случаен, так как позволяет эффективно реализовать и привязку к цели, и модифицированный прогноз ее параметров на основе углового сопровождения цели. Для этого по окончании режима привязки, ее фильтр-идентификатор редуцируют, выделяя из него дальномерный канал и канал углового сопровождения цели. Фильтр-идентификатор канала углового сопровождения по измерениям углов визирования цели формирует перечень оценок характерных для него параметров, а дальномерный канал, на основе оценок собственных параметров, полученных в режиме привязки, и текущих оценок составляющих скорости канала углового сопровождения реализует прогноз своих параметров, которые используют в процедуре углового сопровождения. 5 ил.

Изобретение относится к области комплексных навигационных систем, систем управления и наведения летательных аппаратов (ЛА). Технический результат изобретения - повышение точности и быстродействия оптимального оценивания и коррекции всех измеряемых инерциальной навигационной системой (ИНС) навигационных и пилотажных параметров в обеспечение эффективного решения навигационных, боевых и специальных задач. Способ оценивания ошибок инерциальной информации и ее коррекции по измерениям спутниковой навигационной системы заключается в том, что используют традиционную процедуру оптимальной фильтрации и идентификации Калмана, для чего сигналы измерения оптимального фильтра-идентификатора формируют посредством сравнения одноименных географических координат местоположения и горизонтальных составляющих абсолютной линейной скорости в проекциях на оси опорного трехгранника гироплатформы (ГП) ИНС, сформированных по измерениям спутниковой навигационной системы (СНС), а его структуру синтезируют в соответствии с традиционной для ИНС моделью ошибок, при этом характер полета методически организуют таким образом, что после 270 секунд прямолинейного горизонтального полета, на котором реализуют точное «горизонтирование» гироплатформы и оценивают хорошо наблюдаемые параметры горизонтальных каналов ИНС, осуществляют маневр, типа «змейки», координированного или боевого разворотов, после чего активную фазу процедуры оптимальной фильтрации и идентификации приостанавливают и фильтр-идентификатор переводят в режим долгосрочного - до следующего сеанса коррекции, прогноза, для реализации которого сигналы измерения обнуляют, а значения оценок на момент завершения активной фазы процедуры оценивания используют в качестве начальных условий в процедуре прогноза, при этом сам прогноз осуществляют в соответствии с дискретными уравнениями расчета априорных оценок ошибок ИНС, а коррекцию выходных параметров ИНС - географических координат местоположения и составляющих абсолютной линейной скорости, реализуют в разомкнутой схеме ИНС, для чего используют текущие прогнозируемые значения оценок параметров состояния ИНС. При этом модель ошибок ИНС расширяют за счет включения в нее математического описания координат ее местоположения относительно антенного блока (АБ) СНС и представляют их в виде системы трех взаимосвязанных дифференциальных уравнений первого порядка в проекциях на оси опорного трехгранника ГП ИНС, которые одновременно описывают аддитивно входящие в скоростные сигналы измерения кинематические составляющие относительной скорости движения ИНС, а при формировании сигналов измерения и матрицы наблюдения используют кинематические соотношения, связывающие ошибки Δϕ, Δλ, Δχ счисления географических координат местоположения и угла азимутальной ориентации опорного трехгранника ГП ИНС с погрешностями выдерживания вертикали αx, αy и углом αz азимутального ухода ГП ИНС с точностью до величин второго порядка малости относительно таких параметров, как Δϕ, Δλ, αх, αy, αz, обеспечивают определение текущих значений элементов матриц сообщения и наблюдения. 1 з.п. ф-лы, 4 ил.

Изобретение относится к области измерительных информационных систем и комплексов боевых летательных аппаратов (ЛА). Технический результат – расширение функциональных возможностей. Для этого оценивание и «прогноз» параметров движения цели осуществляют в проекциях на оси инерциальной системы координат, что приводит к поканальной декомпозиции уравнений относительного движения цели, вследствие чего, вместо модели 9-го порядка, получают три структурно идентичных и несвязанных между собой канала. Синтезированные на их основе три фильтра-идентификатора формируют полный массив оптимальных оценок, которые используют в качестве начальных условий, в более эффективной по сравнению с прогнозом процедуре оптимального оценивания на основе модифицированного угломестного метода расчета дальности. В результате обеспечиваются упрощение используемой в режиме привязки процедуры оптимального оценивания и прогноза и реализация альтернативной прогнозу и унифицированной с режимом привязки процедуры оптимального оценивания на основе модифицированного угломестного метода расчета дальности для обеспечения повышения точности и эффективности решения боевой задачи. 6 ил.

Изобретение относится к области комплексных навигационных систем, систем управления и наведения летательных аппаратов (ЛА). Технический результат – расширение функциональных возможностей. Указанный результат достигается за счет: - расширения традиционной модели ошибок инерциальной навигационной системы (ИНС) и включения в нее системы из трех взаимосвязанных дифференциальных уравнений 1-го порядка, описывающих изменение координат местоположения ИНС относительно доплеровского измерителя скорости (ДИСС) в проекциях на оси опорного трехгранника гироплатформы (ГП); - корректного формирования сигналов измерения, матрицы наблюдения и модели сообщения с использованием соотношений, связывающих ошибки счисления основной тройки навигационных параметров с малыми углами рассогласования реального и опорного трехгранников ГП ИНС. Высокая точность оценивания скоростных ошибок и углов ухода реальной ГП ИНС позволяет реализовать эффективную коррекцию навигационной и пилотажной информации и из двух потенциально равноточных ИНС определить ту, угловая информация которой наиболее приемлема для пилотирования и решения боевых и специальных задач. 4 ил.

Изобретение относится к способу управления траекторией летательного аппарата (ЛА) при посадке на незапрограммированный аэродром. Техническим результатом является повышение безопасности полета ЛА. В способе управления траекторией посадки летательного аппарата осуществляют предварительное измерение с помощью бортовых систем визуальной ориентации координат ЛА относительно любой визуально идентифицируемой и запрограммированной навигационной точки (НТ) в районе аэродрома, которую с учетом известных параметров НТ используют для коррекции местоположения ЛА, а в процессе самой посадки с помощью бортовых систем визуальной ориентации измеряют координаты ЛА относительно ближнего торца ВПП, которые с учетом известных параметров ближнего торца ВПП используют для уточнения положения ЛА относительно траектории посадки. 6 ил.

Изобретение относится к способу управления траекторией летательного аппарата (ЛА) при посадке на незапрограммированный аэродром. Техническим результатом является повышение безопасности полета ЛА. В способе управления траекторией летательного аппарата при посадке на незапрограммированный аэродром измеряют и корректируют параметры движения ЛА, формируют параметры положения ЛА относительно взлетно-посадочной полосы (ВПП), формируют заданную траекторию посадки относительно виртуального курсо-глиссадного радиомаяка (ВРМ), который размещают под точкой стандартного положения курсового радиомаяка, управляют угловым положением ЛА по крену и тангажу с учетом рассогласования пеленга ВРМ и курса ВПП и рассогласования угла места ВРМ и угла наклона заданной траектории посадки, измеряют координаты ближнего торца ВПП незапрограммированного перед полетом аэродрома, которые, с учетом стандартной длины ВПП или расчетной длины ВПП и заданного или расчетного курса ВПП, используют для определения координат ВРМ. 1 з.п. ф-лы, 4 ил.

Изобретение относится к измерительным комплексам и системам летательных аппаратов

Изобретение относится к измерительным комплексам летательных аппаратов (ЛА) - самолетов и вертолетов

Изобретение относится к авиации и предназначено для автоматического решения задачи прицеливания по наземным и воздушным, программным и оперативным целям

 


Наверх