Патенты автора Васильев Валерий Анатольевич (RU)

Изобретение относится к измерительной технике и может быть использовано при создании вторичных измерительных преобразователей, работающих совместно с датчиками резистивного и емкостного типов, предназначенных для измерения различных физических величин (температуры, давления, влажности, силы и др.). Предложенный универсальный модуль частотного интегрирующего развертывающего преобразователя для датчиков физических величин содержит корпус, электрические контактные выводы, вмонтированные в корпус, операционные усилители, резисторы и конденсаторы. Первый электрический контактный вывод соединен через первый резистор с инвертирующим входом первого операционного усилителя, второй вход которого соединен со вторым электрическим контактным выводом. Третий электрический контактный вывод соединен через второй резистор с инвертирующим входом первого операционного усилителя. Четвертый электрический контактный вывод соединен с неинвертирующим входом второго операционного усилителя. Пятый электрический контактный вывод соединен с инвертирующим входом третьего операционного усилителя. Шестой электрический контактный вывод соединен с неинвертирующим входом третьего операционного усилителя. Седьмой электрический вывод соединен с электрическими выводами минуса электрического питания первого, второго и третьего операционных усилителей. Восьмой электрический контактный вывод соединен с выходом первого операционного усилителя. Девятый электрический контактный вывод соединен с инвертирующим входом первого операционного усилителя. Десятый электрический контактный вывод соединен с выходом второго операционного усилителя. Одиннадцатый электрический контактный вывод соединен с выходом третьего операционного усилителя, а двенадцатый электрический контактный вывод соединен с электрическими выводами плюса электрического питания первого, второго и третьего операционных усилителей. Инвертирующий вход первого операционного усилителя соединен через первый конденсатор с выходом первого операционного усилителя, с инвертирующим входом второго операционного усилителя и с восьмым электрическим контактным выводом, а также соединен непосредственно с девятым электрическим контактным выводом, который через второй конденсатор соединен с выходом второго операционного усилителя и с десятым электрическим контактным выводом, соединенным через третий резистор с инвертирующим входом третьего операционного усилителя, выход которого через четвертый резистор соединен с инвертирующим входом третьего операционного усилителя. Технический результат – повышение функциональных возможностей устройства, повышение универсальности и упрощение конструкции. 17 ил.

Изобретение относится к области электротехники и может быть использовано в устройствах микро- и нанопозиционирования различного назначения, замыкания контактов, системах автоматики, индикации и других. Техническим результатом является упрощение конструкции, уменьшение массогабаритных показателей устройства, повышение надежности, технологичности, уменьшение трудоемкости изготовления устройства. В устройстве и способе управления самочувствительным ультрозвуковым пьезоэлектрическим двигателем управление скоростью перемещения (вращения) ультразвукового пьезоэлектрического двигателя (УЗПД) осуществляется путем регулирования частоты управляющего сигнала, используя сигнал обратной связи, получаемый от рабочих пьезоэлементов УЗПД, выполняющих функцию первичного преобразователя с помощью вторичного преобразователя, выполненного на оптопаре с резистивным выходным элементом. Способ управления самочувствительным ультразвуковым пьезоэлектрическим двигателем позволяет использовать в качестве источника сигнала обратной связи рабочие пьезоэлементы самочувствительного УЗПД для регулировки частоты управляющих сигналов, что повышает эффективность работы УЗПД при изменении климатических условий и нагрузочных усилий. 2 н. и 1 з.п. ф-лы, 7 ил.

Изобретение относится к технологиям сетевой связи. Технический результат заключается в повышении эффективности мониторинга системы. Способ оценки информации о системе с настройкой на основе адаптивной модели и устройство для его реализации, в котором записывают в запоминающие устройства исходные данные в виде массивов переменных и постоянных значений информационных показателей ситуаций, определяют количество правильно принятых решений и вероятность правильного принятия решения, определяют время реализации решений и вероятность своевременной реализации принятых решений, отображают информацию о ситуации на экране блока отображения, определяют значение показателя эффективности управления и анализируют полученную информацию, уменьшают размерность данных с помощью факторного и корреляционного анализа, приводят информационные показатели для каждой ситуации к относительным единицам. 2 н.п. ф-лы, 2 ил.

Изобретение относится к электротехнике и может быть использовано в качестве исполнительного механизма управляющих систем прецизионного приборостроения, в оптических системах. В усиливающем пьезоэлектрическом актюаторе, содержащем рабочее перемещаемое звено, линейные пьезоэлектрические элементы в виде пьезоэлектрических пакетов, перемещаемое звено выполнено в виде рамки с вырезами, внутри которой расположено основание в форме плиты с четырьмя вертикальными упорами. А четыре пьезоэлектрических пакета поджаты между элементами упругой рамки и четырьмя вертикальными упорами. Два средних пьезоэлектрических пакета поджаты с помощью Г-образной тяги и могут совершать встречное перемещение. Технический результат состоит в повышении линейности, точности позиционирования, нагрузочного усилия, надежности и технологичности изготовления, уменьшении габаритных размеров. 9 ил.

Изобретение относится к способу и устройству оценки информации об эффективности функционирования системы для решения задач управления, контроля и диагностики. Технический результат заключается в повышении эффективности обработки данных. В способе записывают в запоминающие устройства исходные данные в виде массивов переменных и постоянных значений информационных показателей ситуаций, анализируют соответствие вариантов решений и ситуаций, отображают информацию о ситуации на экране блока отображения, определяют значение показателя эффективности управления, определяют время реализации решений и вероятность своевременной реализации принятых решений, отображают на экране блока отображения и анализируют полученную информацию, при этом перед тем как анализируют соответствие вариантов решений и ситуаций уменьшают размерность данных с помощью факторного и корреляционного анализа, приводят информационные показатели для каждой ситуации к относительным единицам с использованием шкал, определяют обобщенные информационные показатели ситуаций по группам заданных показателей состояния системы, для каждой группы вычисляют характеристический уровень и далее вычисляют показатель эффективности функционирования системы. 2 н.п. ф-лы, 2 ил.

Изобретение относится к системе преобразования, анализа и оценки информационных признаков объекта. Технический результат заключается в повышении эффективности обработки данных. Система содержит блок формирования информационных признаков системы (1), блок сравнения и выбора существенных признаков (2), блок выбора решателей (3), блок формирования правил решателя (4), блок установки шкалы преобразования (5), блок преобразования абсолютных значений признаков в относительные (6), сервер баз данных (7), блок вычисления показателей состояния системы (8), блок вычисления корреляционных зависимостей между информационными признаками (9), блок определения оптимальных значений информационных признаков (10), блок вычисления коэффициента эффективности системы (11), блок выбора рекомендаций (12), блок визуализации данных (13), АРМ пользователя (14). 3 ил.

Изобретение относится к системам анализа и обработки информации об инновационном потенциале предприятий. Техническим результатом является повышение эффективности обработки информации об инновационном потенциале для принятия решений по управлению предприятием. Система содержит: модуль приема данных текущих параметров информации о системе, модуль задания параметров текущего решения для оценки информации об инновационном потенциале, модуль формирования цикла считывания показателей информации о системе, модуль расчета контрольных значений параметров, модуль оценки критерия, модуль селекции базового адреса решателя, модуль модификации адресов решения базы данных сервера, модуль селекции базового адреса правила решателя, модуль формирования сигналов записи и считывания данных правила решателя базы данных сервера, модуль формирования цикла считывания решателей, модуль формирования цикла считывания правила решения текущего решателя. 16 ил., 4 табл.

Изобретение относится к измерительной технике, в частности к микромеханическим датчикам, и может быть использовано для создания датчиков для измерения давлений жидких и газообразных агрессивных сред в условиях воздействия широкого диапазона стационарных и нестационарных температур. Датчик содержит корпус, установленную в нем нано- и микроэлектромеханическую систему (НиМЭМС), состоящую из мембраны, подушки с силопередающим штоком, соединенным с балкой, имеющей отверстия и прорези, на плоской поверхности которой образована гетерогенная структура из тонких пленок материалов, контактной колодки, соединительных проводников. Сформированные в гетерогенной структуре тензорезисторы, состоят из идентичных тензоэлементов, соединенных перемычками, включенными в мостовую измерительную цепь. Тензоэлементы, включенные в противоположные плечи мостовой измерительной цепи, размещены на плоской поверхности балки, а центры других тензоэлементов, включенных в противоположные плечи мостовой измерительной цепи, размещены на плоской поверхности балки. При этом диаметр отверстий, толщина балки и диаметр силопередающего штока определены также по установленным соотношениям. Технический результат заключается в повышении точности и чувствительности датчика. 2 ил., 1 табл.

Изобретение относится к области метрологии. Пьезоэлектрический актюатор содержит пьезокерамические секции, каждая из которых состоит из пары соединенных механически друг с другом пьезоэлементов, имеющих на одной плоской поверхности грани по одному плоскому электроду, а на другой противоположной плоской поверхности по два плоских электрода, установленных так, что два плоских электрода одного пьезоэлемента обращены к двум плоским электродам другого пьезоэлемента внутри пьезокерамической секции. Причем два электрода одного пьезоэлемента электрически соединены с двумя электродами другого пьезоэлемента соответственно и являются измерительными электродами пьезокерамической секции, которые подключены к измерительным входам формирователя электрического сигнала, состоящего из измерительного преобразователя емкостного типа, последовательно соединенного с блоком установки и саморегулирования управляющего напряжения, имеющего управляющий вход. Входными управляющими электродами пьезокерамической секции являются одиночный плоский электрод одного пьезоэлемента и одиночный плоский электрод другого пьезоэлемента, расположенные снаружи такой секции, которые подключены к выходу блока установки и саморегулирования управляющего напряжения. Технический результат – повышение надежности и точности управления. 5 ил.

Изобретение относится к электротехнике и и может быть использовано для привода различных устройств в прецизионном приборостроении, в оптических системах, в системах нанотехнологий. Технический результат состоит в упрощении управления и повышении надежности и уменьшении габаритов. Устройство управления пьезоэлектрическим актюатором содержит рабочие электроды, установленные на его одних противоположных гранях. Пьезодвигатель содержит усилитель напряжения, блок задания частоты, соединенный с элементом сравнения и с блоком регулирования управляющего напряжения. Мостовая измерительная цепь состоит из первого и второго резисторов, образующих два противоположных ее плеча, четырех конденсаторов, второй и третий из которых образуют два других противоположных плеча, а первый и четвертый конденсаторы подключены параллельно первому и второму резистору соответственно. Также введены блок формирования управляющего напряжения, интегратор, компаратор, усилитель тока и оптопара. Электроды первого и четвертого конденсаторов имеют гребенчатую форму и сформированы на других противоположных гранях пьезоэлемента, параллельных направлению перемещения. Первый вывод измерительной диагонали мостовой измерительной цепи соединен с первым входом интегратора, а ее второй вывод соединен со вторым входом интегратора и вторым входом компаратора. Выход интегратора подключен к первому входу компаратора. Выход компаратора соединен со входом усилителя тока, с третьим входом интегратора и первым выводом питающей диагонали мостовой измерительной цепи, второй вывод которой соединен с общей шиной питания. Выход усилителя тока подключен к входу оптопары, а ее выход соединен со вторым входом элемента сравнения и с первым входом блока задания частоты, имеющего второй вход для подачи сигнала управления. Выход блока задания частоты соединен с первым входом элемента сравнения и со вторым входом блока регулирования управляющего напряжения, а его выход через блок формирования управляющего напряжения соединен со входом усилителя напряжения, выходные выводы которого подключены к выводам пьезоактюатора. 8 ил.

Изобретение относится к электротехнике и может быть использовано в качестве исполнительного механизма управляющих систем прецизионного приборостроения, в оптических системах и др. Технический результат состоит в повышении линейности, точности позиционирования, нагрузочного усилия, надежности и технологичности изготовления. Усиливающий пьезоэлектрический актюатор содержит линейные пьезоэлектрические элементы, перемещаемое звено, выполненное в виде рамки с двумя параллельными противоположными жесткими сторонами и двумя выпуклыми упругими сторонами с жесткими центрами. В рамке выполнены вырезы, образующие изгибные элементы на границах жестких и упругих сторон рамки с внутренней и внешней ее стороны, а также по краям жестких центров с внешней стороны рамки. Четыре пьезоэлектрических пакета из линейных пьезоэлектрических элементов установлены параллельно друг другу на неподвижном основании в форме плиты с тремя вертикальными упорами, ориентированы в одном направлении поляризации и электрически соединены параллельно. Первый и четвертый пьезоэлектрические пакеты поджаты между первым и третьим вертикальными упорами и первой жесткой стороной рамки, а второй и третий - между вторым вертикальным упором и второй жесткой стороной рамки. 5 ил.

Изобретение относится к измерительной технике, в частности к датчикам, предназначенным для измерения давления жидких и газообразных сред в условиях воздействия нестационарных температур измеряемой среды. Термоустойчивый датчик давления на основе нано- и микроэлектромеханической системы содержит корпус, установленную в нем нано- и микроэлектромеханическую систему (НиМЭМС), состоящую из упругого элемента - мембраны с жестким центром, с периферийным основанием в виде оболочки вращения с кольцевой проточкой. На мембране образована гетерогенная структура из тонких пленок материалов, в которой сформированы контактные площадки, тензорезисторы из одинаковых тензоэлементов, соединенные перемычками, включенные в измерительный мост. Центры окружных и радиальных тензоэлементов расположены по окружности, радиус которой определен по соотношению: r(x)=(0,744-0,0476·cos(4,806x)-0,07482·sin(4,806х)-0,01826·cos(9,612х)+0,005405·sin(9,612х))·rм, где x = r 0 r м - отношение радиуса жесткого центра r0 к радиусу мембраны rм, при этом радиус периферийного основания определен по соотношению: rп=1,28rм. Техническим результатом изобретения является повышение точности путем повышения устойчивости к воздействию термоудара при одновременном уменьшении нелинейности мостовой измерительной цепи датчика и обеспечении высокой чувствительности. 6 ил.

Изобретение относится к измерительной технике, в частности к тензорезисторным датчикам давления на основе тонкопленочных нано- и микроэлектромеханических систем (НиМЭМС) с мостовой измерительной цепью, предназначенных для использования в системах управления, контроля и диагностики объектов длительного функционирования. Технический результат: повышение временной и температурной стабильности, ресурса, срока службы, а также уменьшение времени готовности и погрешности в условиях воздействия нестационарных температур и повышенных виброускорений, а также возможность использования диагонали питания в качестве датчика температуры тензорезисторов интеллектуальных датчиков давления на основе НиМЭМС. Способ изготовления высокостабильного тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы (НиМЭМС) заключается в полировании поверхности мембраны, формировании на ней диэлектрической пленки и тензоэлементов с низкоомными перемычками и контактными площадками между ними с использованием шаблона тензочувствительного слоя. При этом производятся измерения сопротивлений тензорезисторов при воздействующих тестовых температурах, определяются температурные коэффициенты сопротивлений тензорезисторов в диапазоне воздействующих температур. Далее производится вычисление по ним критерия стабильности и сравнение его с тестовыми значениями. Определяют соответственно первый и вторые критерии стабильности по соотношениям ψτ01j=|(α2j+α4j)-(α1j+α3j)|, ψij02(α)=αij, где α1j, α2j, α3j, α4j, - температурный коэффициент сопротивления 1, 2, 3, 4-ого тензорезистора НиМЭМС в j-ом температурном диапазоне; αij - температурный коэффициент сопротивления i-ого тензорезистора НиМЭМС в j-ом температурном диапазоне. Кроме того, тензоэлементы, перемычки, контактные площадки и выводные проводники соединяют в мостовую измерительную цепь и определяют третьи критерии стабильности по соотношениям ψkj03(α)=αkj, где αkj - температурный коэффициент сопротивления k-ой диагонали мостовой измерительной цепи НиМЭМС в j-ом температурном диапазоне. В случае если значения первого, второго, а также третьего критерия находятся в заданных диапазонах, которые определяются экспериментальным путем по статистическим данным для конкретного типоразмера датчика, то данную сборку передают на последующие операции. 1 з.п. ф-лы, 2 ил.

Изобретение относится к измерительной технике, в частности к тензорезисторным датчикам давления на основе тонкопленочных нано- и микроэлектромеханических систем (НиМЭМС) с мостовой измерительной цепью, предназначенных для использования в системах управления, контроля и диагностики объектов длительного функционирования. Технический результат: повышение временной и температурной стабильности, ресурса, срока службы, а также уменьшение времени готовности и погрешности в условиях воздействия нестационарных температур и повышенных виброускорений, а также возможность использования диагонали питания в качестве датчика температуры тензорезисторов интеллектуальных датчиков давления на основе НиМЭМС. Способ изготовления тензорезисторного датчика давления с высокой временной и температурной стабильностью на основе тонкопленочной нано- и микроэлектромеханической системы (НиМЭМС) включает формирование тензорезисторов путем последовательности технологических операций, воздействие тестовых факторов, определение сопротивлений тензорезисторов при тестовых воздействиях, вычисление по ним критериев стабильности и сравнение их с тестовыми значениями. При этом после присоединения выводных проводников к контактным площадкам тензорезисторы НиМЭМС подвергают воздействию ряда тестовых напряжений, полярность которых совпадает с рабочей полярностью, и ряда тестовых напряжений, полярность которых противоположна рабочей полярности, а величины напряжений при обеих полярностях последовательно равны N-1Uм, 2N-1Uм, 3N-1Uм, … NN-1Uм, где N-количество интервалов разбиения величины максимально допустимого напряжения питания Uм тензорезисторов, и измеряют токи, протекающие через тензорезисторы при каждом тестовом значении напряжения. Критерии стабильности определяют по соотношениям , , , где Ij+ - ток, измеренный при тестовых напряжениях Uj+, полярность которых совпадает с рабочей полярностью; Ij- - ток, измеренный при тестовых напряжениях Uj-, полярность которых противоположна рабочей полярности, и, если , , , где Ψ1(R)max, Ψ2(R)max - соответственно предельно допустимое значение первого и второго критерия стабильности, которые определяются экспериментальным путем по статистическим данным для конкретного типоразмера датчика, то данную сборку передают на последующие операции. Дополнительно тензорезисторы, контактные площадки и выводные проводники соединяют в мостовую измерительную цепь и аналогично подвергают ее воздействию ряда тестовых напряжений, определяя по соответствующим соотношениям значения третьего и четвертого критерия стабильности. Если эти значения не выходят за пределы допустимых значений, то данную сборку передают на последующие операции. 1 з.п. ф-лы, 2 ил.

Способ настройки термоустойчивого датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы относится к области измерительной техники и предназначен для измерения давления при воздействии нестационарной температуры измеряемой среды. Способ заключается во введении в мостовую измерительную цепь из тензорезисторов двух компенсационных резисторов, воздействии нестационарной температуры измеряемой среды на мембрану датчика, определении начального выходного сигнала и его изменении от действия температуры, определении необходимой величины сопротивлений компенсационных резисторов и закорачивании компенсационных резисторов до необходимой величины. При этом первый компенсационный резистор размещают в зоне минимального градиента температурного поля на минимально возможном расстоянии от тензорезисторов, а второй компенсационный резистор размещают в зоне максимального градиента температурного поля. Причем сначала определяют необходимую величину второго компенсационного резистора при выключенном напряжении питания и воздействии нестационарной температуры и включают его в мостовую измерительную цепь из тензорезисторов, а затем определяют необходимую величину первого компенсационного резистора при включенном напряжении питания и стационарных температурах. Техническим результатом изобретения является уменьшение погрешности датчика давления. 3 ил.

Изобретение относится к измерительной технике, в частности к тензорезисторным датчикам давления на основе тонкопленочных нано- и микроэлектрических систем (НиМЭМС) с мостовой измерительной цепью, предназначенных для использования в системах управления, контроля и диагностики объектов длительного функционирования. Техническим результатом изобретения является повышение временной и температурной стабильности, ресурса, срока службы. Определение температурных коэффициентов сопротивлений тензорезисторов проводят в поддиапазонах воздействующих температур, охватывающих в совокупности весь диапазон температур при эксплуатации, и определяют соответственно первый и второй дополнительные критерии стабильности по соотношениям Ψτ01j=|(α2j+α4j)-(α1j+α3j)|, Ψτ02j(α)=αij, где α1j, α2j, α3j, α4j - температурный коэффициент сопротивления 1, 2, 3, 4-ого тензорезистора НиМЭМС в j-ом температурном диапазоне; αij - температурный коэффициент сопротивления i-ого тензорезистора НиМЭМС в j-ом температурном диапазоне, и если |Ψτ01j|<|Ψτ01jmax|, Ψτ02jmin<Ψτ02j(α)<Ψτ02jmax, где Ψτ01jmax, Ψτ02jmin, Ψτ02jmax - соответственно предельно допустимое максимальное значение первого дополнительного критерия стабильности, предельно допустимые минимальное и максимальное значение второго дополнительного критерия стабильности i-ого тензорезистора НиМЭМС в j-ом температурном диапазоне, которые определяются экспериментальным путем по статистическим данным для конкретного типоразмера датчика, то данную сборку передают на последующие операции.

Изобретение относится к измерительной технике и может быть использовано для измерения давления в системах измерения, контроля и управления. Датчик абсолютного давления содержит корпус со штуцером, металлическую мембрану, передающую воздействие давления через несжимаемую жидкость полупроводниковому чувствительному элементу, выполненному в виде профилированного монокристалла кремния плоскости (100) с квадратной мембраной, соединенного электростатическим способом в вакууме со стеклянным основанием, на плоской поверхности профилированного монокристалла сформированы тензорезисторы, объединенные в мостовую измерительную цепь. Центры тензорезисторов расположены на расстоянии l от взаимно перпендикулярных осей Ox и Oy, проведенных через центр мембраны, лежащих в ее плоскости и параллельных границам тонкой части мембраны с основанием полупроводникового чувствительного элемента, которое определено из соотношения: где ам - размер мембраны полупроводникового кристалла; hм - толщина мембраны полупроводникового кристалла. Технический результат - повышение чувствительности устройства. 3 ил.

Изобретение относится к измерительной технике и может быть использовано для изготовления тонкопленочных нано- и микроразмерных систем датчиков различных физических величин, предназначенных для прецизионных измерений. Оно обеспечивает возможность управляемого синтеза тонкопленочных резистивных элементов (тензорезисторов, терморезисторов) нано- и микроразмерных систем датчиков физических величин с заданным значением температурного коэффициента сопротивления (ТКС). Способ изготовления заключается в том, что на планарной стороне упругого элемента методом вакуумного распыления образуют гетерогенную структуру из нано- и микроразмерных пленок материалов, содержащую тонкопленочные диэлектрические, резистивные и контактные слои. С использованием фотолитографии и травления формируют тензоэлементы (тензорезисторы), контактные проводники и контактные площадки к ним. Тензорезистивный слой формируют методом магнетронного распыления в вакуумной камере с одновременным использованием двух мишеней из никеля и титана. Упругий элемент устанавливают на карусель, нагревают, создают давление аргона, а затем вращают карусель с заданной плотностью токов в зонах распыления первой и второй мишеней, затем упругий элемент с нанесенным на него тензорезистивным слоем выдерживают в вакууме при повышенной температуре в течение нескольких часов. 7 ил.

Изобретение относится к измерительной технике. С его помощью представляется возможным расширить температурный диапазон работы датчика на основе тонкопленочной нано- и микроэлектромеханической системы, повысить воспроизводимость таких параметров тензорезисторов, как электрическое сопротивление и температурный коэффициент сопротивления, снизить температурную чувствительность датчиков. В способе изготовления термоустойчивой нано- и микроэлектромеханической системы высокотемпературного датчика механических величин на планарной стороне упругого элемента методами вакуумного распыления образуют гетерогенную структуру из нано- и микроразмерных пленок материалов, содержащую тонкопленочные диэлектрические, тензорезистивные и контактные слои. Формируют тензоэлементы - тензорезисторы, контактные проводники и контактные площадки к ним. Тензорезистивный слой формируют методом магнетронного распыления в вакуумной камере с одновременным использованием двух мишеней из никеля и титана. Упругий элемент со сформированным на нем диэлектрическим слоем устанавливают на карусель, нагревают, создают давление аргона, а затем вращают карусель с упругим элементом при определенном соотношении плотности токов в зонах распыления первой и второй мишеней. После этого упругий элемент с нанесенным на него тензорезистивным слоем выдерживают в вакууме при повышенной температуре. 6 ил., 1 табл.

Изобретение относится к измерительной технике и может быть использовано в технологии изготовления малогабаритных тонкопленочных датчиков механических величин, работоспособных в широком диапазоне температур. Изобретение обеспечивает расширение температурного диапазона работы датчика, повышение воспроизводимости таких параметров тензорезисторов, как электрическое сопротивление и температурный коэффициент сопротивления, снижение температурной чувствительности датчиков. В способе изготовления тонкопленочной нано- и микроэлектромеханической системы высокотемпературного датчика механических величин на планарной стороне упругого элемента методами вакуумного распыления образуют гетерогенную структуру из нано- и микроразмерных пленок материалов, содержащую тонкопленочные диэлектрические, тензорезистивные и контактные слои. Формируют тензоэлементы (тензорезисторы), контактные проводники и контактные площадки к ним. Тензорезистивный слой формируют методом магнетронного распыления в вакуумной камере с одновременным использованием двух мишеней из никеля и титана. Упругий элемент со сформированным на нем диэлектрическим слоем устанавливают на карусель, нагревают, создают давление аргона, а затем вращают карусель, при этом задают плотности токов в зонах распыления первой и второй мишеней, исходя из их определенного соотношения. После этого упругий элемент выдерживают в вакууме при повышенной температуре в течение нескольких часов. 5 ил.

Изобретение относится к измерительной технике и может быть использовано в технологии изготовления малогабаритных тонкопленочных датчиков механических величин, работоспособных в широком диапазоне температур. Изобретение позволяет расширить температурный диапазон работы датчика на основе тонкопленочной нано- и микроэлектромеханической системы, повысить воспроизводимость таких параметров тензорезисторов, как электрическое сопротивление и температурный коэффициент сопротивления (ТКС), снизить температурную чувствительность датчиков. Способ изготовления тонкопленочной нано- и микроэлектромеханической системы высокотемпературного датчика механических величин заключается в том, что на планарной стороне упругого элемента методами вакуумного распыления образуют гетерогенную структуру из нано- и микроразмерных пленок материалов, содержащую тонкопленочные диэлектрические, тензорезистивные и контактные слои, формируют тензорезисторы, контактные проводники и контактные площадки к ним. Тензорезистивный слой формируют методом магнетронного распыления в вакуумной камере с одновременным использованием двух мишеней из никеля и титана. Упругий элемент со сформированным на нем диэлектрическим слоем устанавливают на карусель, нагревают, создают давление аргона, а затем вращают карусель с упругим элементом, при этом задают определенные плотности токов в зонах распыления мишеней. После этого упругий элемент выдерживают в вакууме при повышенной температуре. 1 з.п. ф-лы, 5 ил.

Изобретение относится к измерительной технике и может быть использовано для измерения давления жидких и газообразных средств. Датчик содержит корпус, установленную в нем нано- и микроэлектромеханическую систему (НиМЭМС), состоящую из упругого элемента - мембраны с жестким центром, с периферийным основанием в виде оболочки вращения, образованной на ней гетерогенной структуры из тонких пленок материалов, в которой сформированы контактные площадки, первые радиальные тензорезисторы из одинаковых тензоэлементов, расположенных по одной окружности мембраны, и вторые радиальные тензорезисторы из одинаковых тензоэлементов, расположенных по другой окружности на мембране, соединенные перемычками, включенные в измерительный мост. Радиус жесткого центра определен из соотношения: rж.ц.=0,42rм, где rм - радиус мембраны. При этом тензоэлементы первых радиальных тензорезисторов расположены по окружности, радиус которой определен из соотношения r1=0,444rм, а тензоэлементы вторых радиальных тензорезисторов расположены по окружности, радиус которой определен из соотношения r2=0,733 rм. Техническим результатом изобретения является повышение точности за счет повышения чувствительности при одновременном уменьшении нелинейности. 5 ил.

Изобретение относится к измерительной технике и может использоваться при изготовлении датчиков вакуума для измерения давления разреженного газа в вакуумных установках различного назначения. Предложен способ изготовления наноструктурированного чувствительного элемента датчика вакуума, заключающийся в образовании гетероструктуры из различных материалов, в которой формируют тонкопленочный полупроводниковый резистор, после чего ее закрепляют в корпусе датчика, а контактные площадки соединяют с выводами корпуса при помощи контактных проводников. Тонкопленочный полупроводниковый резистор формируют в виде сетчатой наноструктуры (SiO2)40%(SnO2)50%(In2O3)10%, где 40% - массовая доля диоксида кремния (SiO2), 50% - массовая доля диоксида олова (SnO2), 10% - массовая доля оксида индия (In2O3), путем нанесения золя ортокремниевой кислоты, содержащего гидроксид олова, на подложку из кремния с помощью центрифуги и последующим отжигом, который приготавливают в два этапа, на первом этапе смешивают тетраэтоксисилан и этиловый спирт, затем на втором этапе в полученный раствор вводят дистиллированную воду, соляную кислоту (HCl) и двухводный хлорид олова (SnCl2·2H2O), а также дополнительно 4,5-водный нитрат индия (In(NO3)3·4,5H2O). Предложен также датчик вакуума с наноструктурой, изготовленной по предлагаемому способу. Технический результат - повышенная чувствительность датчика по сравнению с ранее известными. 2 н. и 1 з.п. ф-лы, 3 ил.

Изобретение относится к измерительной технике и может быть использовано для измерения давлений жидких и газообразных агрессивных сред в условиях воздействия широкого диапазона стационарных и нестационарных температур. Устройство содержит корпус, установленную в нем нано- и микроэлектромеханическую систему (НиМЭМС), состоящую из мембраны с силопередающим штоком, соединенным с балкой, имеющей отверстия и прорези, на плоской поверхности которой образована гетерогенная структура из тонких пленок материалов, контактной колодки, соединительных проводников. B гетерогенной структуре НиМЭМС сформированы тензорезисторы, которые состоят из идентичных тензоэлементов, соединенных тонкопленочными перемычками, включенными в мостовую измерительную цепь. Тензоэлементы выполнены в форме двух трапеций, соединенных между собой малыми основаниями по линии их центра. При этом размещение тензоэлементов на плоской поверхности балки связано определенными соотношениями. Технический результат заключается в повышении точности и чувствительности датчика. 4 ил.

Изобретение относится к измерительной технике и может быть использовано для прецизионных измерений давления жидких и газообразных сред. Сущность: датчик содержит корпус, установленную в нем нано- и микроэлектромеханическую систему (НиМЭМС), состоящую из упругого элемента в виде мембраны с жестким центром, заделанной по контуру в опорное основание, образованной на ней гетерогенной структуры из тонких пленок материалов, герметизирующей контактной колодки и соединительных проводников. Сформированные в гетерогенной структуре радиальные тензорезисторы, установленные по двум окружностям, состоят из идентичных тензоэлементов в форме квадратов, соединенных тонкопленочными перемычками и включенных в мостовую измерительную цепь. Центры первых и вторых тензоэлементов размещены по окружностям с радиусами, определенными по соответствующим соотношениям. Между мембраной и жестким центром, а также мембраной и опорным основанием выполнены закругления с определенным радиусом. Технический результат: повышение точности и технологичности. 1 табл., 9 ил.

Предлагаемое изобретение относится к измерительной технике и может быть использовано при измерении давления жидких и газообразных сред. Заявленная группа изобретений включает способ измерения давления с использованием тензорезисторного датчика давления на основе нано- и микроэлектромеханической системы (НиМЭМС) и интеллектуальный датчик давления на основе НиМЭМС. При этом в способе измерения давления, в режиме калибровки и измерения одновременно регистрируют данные напряжений между узлами питающей диагонали Upt, между одним узлом питающей диагонали и каждым из узлов измерительной диагонали (Uiz1, Uiz2). В режиме калибровки сохраняют данные для вычисления напряжений Uiz1, Uiz2, а в режиме измерения вычисляют измеренное значение давления Р исходя из напряжений питающей диагонали Upt и измерительной диагонали Uiz=Uiz1-Uiz2 и сохраненных на этапе калибровки данных. Затем вычисляют напряжения между узлом питающей диагонали и каждым из узлов измерительной диагонали, исходя из величины измеренного значения давления Р, напряжения питающей диагонали Upt и сохраненных на этапе калибровки данных, определяют разницу между вычисленными и измеренными значениями напряжений Uiz1, Uiz2. Если эта разница превышает значение критерия стабильности, то принимается решение о недостоверности результата измерения давления. Интеллектуальный датчик давления на основе НиМЭМС, реализующий предлагаемый способ измерения давления, содержит мостовую измерительную цепь из тензорезисторов, источник тока, три аналого-цифровых преобразователя, вычислительное устройство, постоянное запоминающее устройство и цифровой интерфейс, причем вычислительное устройство блока самоконтроля, второй, третий и четвертый входы которого соединены с первым, вторым и третьим выходами блока преобразования кода АЦП в численное значение напряжения, а пятый вход соединен с четвертым входом вычислительного устройства. Задачей предлагаемого изобретения является повышение надежности результата измерения путем введения самоконтроля датчика и осуществления проверки достоверности измерения давления за счет сравнения измеренных и вычисленных значений напряжений между одним узлом питающей диагонали и каждым из узлов измерительной диагонали. Техническим результатом изобретения является повышение надежности результата измерения путем введения самоконтроля датчика и осуществления проверки достоверности измерения давления за счет сравнения измеренных и вычисленных значений напряжений между одним узлом питающей диагонали и каждым из узлов измерительной диагонали. 2 н.п. ф-лы, 2 ил.

Изобретение относится к измерительной технике и может быть использовано для измерения давления в жидких и газообразных агрессивных средах. Датчик абсолютного давления содержит корпус со штуцером, герметизирующую контактную колодку, металлическую мембрану, несжимаемую жидкость, полупроводниковый чувствительный элемент, состоящий из стеклянного основания и квадратного профилированного полупроводникового кристалла, в центре тонкой части которого сформирован жесткий центр квадратной формы, на рабочей части полупроводникового кристалла сформирована мостовая измерительная цепь, состоящая из четырех тензорезисторов. Размер жесткого центра определяется из соотношения: l ж . ц . > h ж . ц . / 1,432 . Центры одних тензорезисторов, включенных в противоположные плечи мостовой измерительной цепи и воспринимающих относительные положительные деформации, расположены на расстоянии от центра кристалла, определенном из соотношения Центры других тензорезисторов, включенных в противоположные плечи мостовой измерительной цепи и воспринимающих относительные отрицательные деформации, расположены на расстоянии от центра кристалла, определенном из соотношения 7 ил., 2 табл.

Изобретение относится к измерительной технике. Способ изготовления датчика вакуума с наноструктурой повышенной чувствительности заключается в том, что образуют гетероструктуру из различных материалов, в которой формируют тонкопленочный полупроводниковый резистор, после чего ее закрепляют в корпусе датчика, а контактные площадки соединяют с выводами корпуса при помощи контактных проводников. Тонкопленочный полупроводниковый резистор формируют в виде сетчатой наноструктуры (SiO2)20%(SnO2)80% путем нанесения золя ортокремниевой кислоты, содержащего гидроксид олова, на подложку из кремния с помощью центрифуги и последующим отжигом, который приготавливают в два этапа, на первом этапе смешивают тетраэтоксисилан и этиловый спирт, затем на втором этапе в полученный раствор вводят дистиллированную воду, соляную кислоту и двухводный хлорид олова (SnCl2·2H2O) в определенных соотношениях. Изобретение обеспечивает повышение чувствительности датчика вакуума. 2 н.п. ф-лы, 4 ил.

Изобретение относится к измерительной технике. В способе изготовления датчика вакуума с наноструктурой получают гетероструктуру из различных материалов, в которой формируют тонкопленочный полупроводниковый резистор, после чего ее закрепляют в корпусе датчика, а контактные площадки соединяют с выводами корпуса при помощи контактных проводников. Тонкопленочный полупроводниковый резистор формируют в виде сетчатой наноструктуры (SiO2)100%-x(SnO2)x. Массовую долю компонента х определяют (задают) в интервале 50%≤х≤90% путем нанесения золя ортокремниевой кислоты, содержащего гидроксид олова, на подложку из кремния с помощью центрифуги и последующим отжигом. Золь приготавливают в два этапа, на первом этапе смешивают тетраэтоксисилан и этиловый спирт, затем на втором этапе в полученный раствор вводят дистиллированную воду, соляную кислоту (HCl) и двухводный хлорид олова (SnCl2·2H2O). Изобретение обеспечивает повышение чувствительности датчика вакуума. 2 н.п. ф-лы, 10 ил.

Изобретение относится к измерительной технике. В способе измерения давления с использованием тензорезисторного датчика давления на основе нано- и микроэлектромеханической системы (НиМЭМС), в режиме измерения значение измеренного давления Pi вычисляют путем бигармонической сплайн интерполяции по контрольным точкам, исходя из сохраненного на этапе калибровки вектор-столбца W(Pэ, Uiz, Upt, X1…Xn) по формуле: Pi=GT×W, где GT - транспонированный вектор-столбец G; символ «×» обозначает матричное произведение. Калибровку для измерения давления осуществляют путем регистрации напряжений измерительной Uiz и питающей Upt диагоналей мостовой измерительной цепи и значений величин X1…Xn, зависящих от дестабилизирующих факторов, и записи в постоянное запоминающее устройство датчика вектор-столбца W, который рассчитывают по формуле: W=g-1×P, где P - вектор-столбец эталонных значений давления в контрольных точках; g - матрица, элементы которой определены в зависимости от количества переменных функции преобразования. Датчик давления на основе НиМЭМС, реализующий предлагаемые способы измерения и калибровки, включает в себя источник тока, тензорезисторный преобразователь давления, АЦП, вычислительное устройство, постоянное запоминающее устройство и цифровой интерфейс. При этом вычислительное устройство содержит блок преобразования кода АЦП в численное значение напряжения, блок расчета численного значения давления. Технический результат - повышение точности измерения давления. 2 н. и 1 з.п. ф-лы, 4 ил., 4 табл.

Изобретение относится к измерительной технике, в частности к тензорезисторным датчикам давления на основе тонкопленочных нано- и микроэлектрических систем с мостовой измерительной цепью, предназначенным для использования в системах управления, контроля и диагностики технически сложных объектов длительного функционирования

Изобретение относится к измерительной технике, в частности к тензорезисторным датчикам давления на основе тонкопленочных нано- и микроэлектрических систем (НиМЭМС) с мостовой измерительной цепью, предназначенным для использования в системах управления, контроля и диагностики технически сложных объектов длительного функционирования

Изобретение относится к датчикам вакуума для измерения давления разреженного газа в вакуумных установках различного назначения

Изобретение относится к измерительной технике и может быть использовано при измерении давления жидких и газообразных средств

Изобретение относится к измерительной технике и может быть использовано для измерения давления жидких и газообразных агрессивных сред в условиях воздействия нестационарных тепловых полей

Изобретение относится к технологии изготовления тензорезисторных датчиков давления на основе тонкопленочных нано- и микроэлектромеханических систем

Изобретение относится к измерительной технике и может быть использовано для измерения давления в системах измерения, контроля и управления

Изобретение относится к электронной технике, в частности к технологии изготовления тонкопленочных тензорезисторных датчиков давления

Изобретение относится к измерительной технике, в частности к датчикам, предназначенным для использования в различных областях науки и техники, связанных с измерением давления в условиях воздействия повышенных виброускорений и нестационарных температур

Изобретение относится к измерительной технике, в частности к датчикам, предназначенным для использования в различных областях науки и техники, связанных с измерением давления в условиях воздействия нестационарных температур и повышенных виброускорений

Изобретение относится к измерительной технике и может быть использовано для измерения давления в системах измерения, контроля и управления

Изобретение относится к измерительной технике и может быть использовано для измерения давления жидких и газообразных агрессивных сред при воздействии нестационарных температур

Изобретение относится к измерительной технике и может быть использовано для измерения давления в условиях воздействия температур измеряемой среды как в системах автоматического контроля, так и в цифровых приборах специального и универсального назначения

Изобретение относится к измерительной технике и может быть использовано для измерения давления в условиях воздействия температур измеряемой среды, как в системах автоматического контроля, так и в цифровых приборах специального и универсального назначения

Изобретение относится к измерительной технике и может быть использовано для измерения давления жидких и газообразных агрессивных сред

Изобретение относится к измерительной технике и может быть использовано для измерения давления в условиях воздействия температур измеряемой среды как в системах автоматического контроля, так и в цифровых приборах специального и универсального назначения

Изобретение относится к измерительной технике и может быть использовано при изготовлении датчиков давления повышенной точности, устойчивых к воздействию нестационарных температур

Изобретение относится к измерительной технике, в частности к датчикам, предназначен для использования в различных областях науки, связанных с измерением давления в условиях воздействия нестационарных температур и повышенных виброускорений

Изобретение относится к области измерительной техники и может быть использовано для измерения давления в условиях воздействия нестационарных температур (термоудара) измеряемой среды

 


Наверх