Патенты автора Малевский Дмитрий Андреевич (RU)

Солнечный фотоэлектрогенератор содержит солнечную батарею (2), установленную на верхней части платформы колесного транспортного средства (1), и устройство развертывания солнечной батареи из исходного компактного транспортного положения. Два соосных колеса (3, 5) транспортного средств (1) выполнены ведущими с помощью установленных на них независимых электроприводов, солнечная батарея (2) с датчиком (17) положения Солнца выполнена в виде части цилиндрической поверхности, обращенной вогнутой поверхностью к колесному транспортному средству (1), с длинными сторонами (7, 8), параллельными оси образующего цилиндрическую поверхность цилиндра и установленными в плоскостях, перпендикулярных общей оси ведущих колес (3, 5). Расстояние d между длинными сторонами (7, 8) солнечной батареи (2) равно (0,90-0,95)⋅L, где L - ширина выпуклой поверхности солнечной батареи (2). Края одной короткой стороны (9) солнечной батареи (2) с помощью двух цилиндрических шарниров (12, 13) соединены штангой (11), параллельной общей оси ведущих колес (3, 5) и прикрепленной к краю платформы транспортного средства (1). Устройство (14) развертывания солнечной батареи из исходного компактного транспортного положения выполнено в виде пружинного механизма, установленного между платформой транспортного средства (1) и штангой (11) и фиксатора угла раскрытия солнечной батареи (2), равного селенографической широте расчетного места посадки фотоэлектрогенератора на Луну. Внутри платформы транспортного средства (1) установлено радиоприемное устройство (18) для удаленного управления фотоэлектрогенератором и маршрутом его движения. Солнечный фотоэлектрогенератор, выполненный согласно изобретению, обеспечивает высокую эффективность преобразования солнечного излучения в течение лунного дня и перемещение фотоэлектрогенератора по поверхности Луны в дистанционном режиме управления. 3 з.п. ф-лы, 4 ил.

Изобретение относится к электронной технике, в частности к способу изготовления светоизлучающих диодов, и может быть использовано в электронной промышленности для преобразования электрической энергии в световую. Способ изготовления светоизлучающего диода на основе гетероструктуры AlGaAs/GaAs включает формирование слоев гетероструктуры на подложке GaAs, нанесение первого омического контакта, нанесение прозрачного покрытия, нанесение слоя металлического отражателя, формирование подложки-носителя GaAs с тыльным и фронтальным омическими контактами, монтаж подложки-носителя и гетероструктуры AlGaAs/GaAs путем формирования соединения AuIn2, удаление подложки GaAs и формирование второго омического контакта. Изобретение обеспечивает возможность изготовления светоизлучающего диода на основе гетероструктуры AlGaAs/GaAs с увеличенной эффективностью преобразования электроэнергии в излучение за счет снижения степени деградации гетероструктуры. 3 з.п. ф-лы, 6 ил.

Изобретение относится к технике связи и может использоваться в системах оптической связи. Технический результат состоит в отсутствии необходимости подводки проводной линии электропитания. Для этого фотоэлектрическое приемное устройство оптической линии связи включает концентратор информационного излучения, в фокусе которого установлен быстродействующий инфракрасный фотодиод, подключенный к электронному блоку обработки информационных сигналов, выход которого предназначен для подключения к входу активного оборудования автономного узла связи. Фотоэлемент установлен перед концентратором информационного излучения и подключен к устройству преобразования и накопления электроэнергии, в котором перед накопителем электроэнергии (20) установлены последовательно соединенные DC-преобразователь-стабилизатор (18) напряжения постоянного тока и регулятор заряда (19). 9 з.п. ф-лы, 2 ил.

Солнечная фотоэнергоустановка содержит вертикальную полую цилиндрическую опору (6), вал (9) с первым приводом (10), коаксиально установленный с возможностью вращения в полости цилиндрической опоры (6), раму (11) со вторым приводом (12) и с оптическим солнечным датчиком (13), установленную на верхнем торце вала (9) посредством цилиндрического шарнира (14), ось которого ортогональна оси вала (9). На раме (11) закреплена солнечная батарея (1) с концентраторами (2) солнечного излучения, в фокусе которых установлены на теплоотводящем основании (4) фотоэлектрические преобразователи (3). Вал (9) выполнен из материала с повышенной теплопроводностью. Вертикальная полая цилиндрическая опора (6) выполнена составной с возможностью частичного погружения в грунт места установки. Нижний участок (8) цилиндрической опоры (6) выполнен из материала с повышенной теплопроводностью, а верхний участок (7) цилиндрической опоры (6) выполнен из теплоизолирующего материала. Во внутренней поверхности цилиндрической опоры (6) выполнена кольцевая цилиндрическая проточка (16). Наружная поверхность участка вала (9), выступающего из верхнего торца цилиндрической опоры (6), и наружная поверхность участка (7) цилиндрической опоры (6), не погружаемого в грунт, выполнены светоотражающими. Изобретение обеспечивает эффективный отвод тепла от теплоотводящего основания фотоэлектрических преобразователей в условиях длительной автономной работы фотоэнергоустановки на поверхности Луны. 9 з.п. ф-лы, 1 ил.

Концентраторный фотоэлектрический модуль с планарными элементами включает по меньшей мере один планарный неконцентраторный кремниевый фотоэлектрический преобразователь (3) с двухсторонней чувствительностью, множество концентраторных А3В5 фотоэлектрических преобразователей (5), смонтированных на теплоотводящие основания (6), и расположенных на поверхности неконцентраторного фотоэлектрического преобразователя (3), закрытого защитной светопрозрачной панелью (4), концентрирующую оптическую систему (7), состоящую из множества собирающих линз (8). Концентраторный фотоэлектрический модуль согласно изобретению обладает повышенной надежностью и высокой энергопроизводительностью за счет эффективного преобразования потоков прямого и рассеянного атмосферой (диффузного) солнечного излучений, а также рассеянного при отражении от земной поверхности излучения (альбедо). 4 з.п. ф-лы, 2 ил.

Изобретение относится к солнечной энергетике и может быть использовано в космических концентраторных солнечных энергоустановках при базировании на космическом летательном аппарате. Концентраторная солнечная батарея включает основание, параболоцилиндрические концентраторы с зеркальной внутренней поверхностью отражения, установленные на основании, цилиндрические направляющие которых параллельны основанию и друг другу, линейные цепочки фотоэлектрических преобразователей, установленные на верхней кромке тыльной стороны каждого последующего концентратора в фокальной линии каждого предыдущего концентратора. Вершина каждого параболоцилиндрического концентратора посредством первого цилиндрического шарнира, параллельного цилиндрической направляющей параболоцилиндрического концентратора, прикреплена к основанию. Противолежащие боковые кромки каждого параболоцилиндрического концентратора посредством второго цилиндрического шарнира соединены с верхними концами двух рычагов, нижние концы которых посредством первого цилиндрического шарнира предыдущего концентратора соединены с основанием. Длина рычагов равна расстоянию между первым и вторым цилиндрическими шарнирами параболоцилиндрического концентратора. Основание выполнено в виде секционного пантографа ножничного типа с количеством секций, равным удвоенному количеству параболоцилиндрических концентраторов. Технический результат заключается в уменьшении массово-габаритных параметров концентраторной солнечной батареи за счет эффективного использования всей площади при обеспечении возможности складывания батареи в нерабочем транспортном состоянии. 7 ил.

Солнечная фотоэлектрическая станция включает раму (1) солнечных элементов (2), прикрепленную к промежуточной раме (4), выполненной в виде круглой цилиндрической балки, снабженной приводом (6), оптическим солнечным датчиком (7), чувствительным к смещению Солнца в плоскости эклиптики, и установленную с возможностью вращения в вертикальной плоскости посредством первых цилиндрических шарниров (11) на двух стойках (12), (13), прикрепленных к основанию (14), одна из которых снабжена механизмом (16) ее вертикального возвратно-поступательного перемещения. Промежуточная рама (4) установлена с возможностью вращения приводом вокруг своей оси (9) посредством вторых цилиндрических шарниров (10), ортогонально закрепленных на первых цилиндрических шарнирах (11). Рама (1) снабжена концентраторами (15) солнечного излучения, в фокусе которых установлены солнечные элементы (2), выполненные в виде прямоугольников с длинной стороной, параллельной оси круглой цилиндрической балки, при этом длина d и ширина h прямоугольников удовлетворяет определенным соотношениям. Способ ориентации солнечной фотоэлектрической станции заключается в том, что основание (14) станции устанавливают в плоскости горизонта Луны, определяют направления сторон света в месте расположения солнечной фотоэлектрической станции, оси первых цилиндрических шарниров (11) промежуточной рамы (4) устанавливают в направлении восток-запад, промежуточную раму (4) устанавливают под углом к горизонтали, равным селенографической широте места расположения солнечной фотоэлектрической станции. При установке солнечной фотоэлектрической станции в северном лунном полушарии верхний конец промежуточной рамы (4) ориентируют на лунный север, при установке фотоэлектрической станции в южном лунном полушарии верхний конец промежуточной рамы (4) ориентируют на лунный юг и от восхода до заката Солнца устанавливают угловую скорость вращения промежуточной рамы (4) 0,54-0,56 град/ч при средней угловой скорости 0,549 град/ч в направлении вращения, обратном направлению вращения Луны вокруг собственной оси. Изобретение обеспечивает ориентацию солнечной батареи на Солнце в течение лунного дня, эффективное преобразование солнечного излучения в электрическую энергию и получение высокого удельного энергосъема в течение лунного дня в условиях длительной автономной работы на поверхности Луны. 2 н. и 3 з.п. ф-лы, 2 ил.

Солнечный фотоэлектрический модуль включает, по меньшей мере, два субмодуля (1), каждый субмодуль (1) содержит зеркальный параболический концентратор (5) солнечного излучения и солнечный элемент (6), расположенный в фокусе зеркального параболического концентратора (5). Зеркальный параболический концентратор (5) выполнен сечением параболоида (б) вращения четырьмя взаимно перпендикулярными плоскостями (I, II, III, IV), параллельными оси параболоида вращения, две из которых (I, II) проходят через ось параболоида вращения, а две других (III, IV) через точку (Т) на параболоиде (6) вращения, равноудаленную от двух первых плоскостей (I, II). Высота зеркального параболического концентратора (5) равна его фокусному расстоянию. Вершина (8) зеркального параболического концентратора (5) закреплена на общем основании (2) модуля, верхний угол (9) зеркального параболического концентратора (5) закреплен на высоте, равной высоте фокуса зеркального параболического концентратора (5) над общим основанием (2), а верхний угол (11) зеркального параболического концентратора (5) закреплен на высоте, равной половине высоты фокуса зеркального параболического концентратора (5) над общим основанием (2). Солнечный фотоэлектрический модуль обеспечивает снижение оптических потерь при концентрировании солнечного излучения, а также увеличение эффективности использования площади модуля за счет уплотненного расположения субмодулей. 2 з.п. ф-лы, 6 ил.
Изобретение относится к солнечной энергетике, в частности к способу изготовления фотоэлектрических преобразователей, и может быть использовано в электронной промышленности для преобразования световой энергии в электрическую. Предложенный способ изготовления омических контактов фотопреобразователя включает напыление на полупроводниковую пластину основы тыльного омического контакта, основы фронтального омического контакта, термообработку гетероструктуры, формирование фронтального и тыльного омических контактов электрохимическим осаждением слоя серебра, при этом электрохимическое осаждение слоя серебра осуществляют при постоянном токе и перемешивании электролита одновременно на фронтальную и тыльную стороны полупроводниковой пластины, расположенной под анодом и обращенной к нему фронтальной стороной, при этом анод возвратно поступательно перемещают со скоростью 1-5 см/мин на расстояние 5-10 см относительно полупроводниковой пластины, а полупроводниковую пластину и анод вращают вокруг вертикальной оси со скоростью 2-60 об/ч с переменным направлением вращения. Технический результат заключается в снижении омических потерь путем увеличения равномерности толщины омических контактов фотопреобразователя по всей площади полупроводниковой пластины при сниженной стоимости технологического процесса. 2 з.п. ф-лы.

Способ изготовления светоизлучающего диода на основе гетероструктуры AlGaAs/GaAs включает формирование фронтального омического контакта на поверхности контактного слоя GaAs, травление световыводящей поверхности AlGaAs/GaAs по маске фронтального омического контакта и текстурирование по маске фронтального омического контакта световыводящей поверхности светоизлучающего диода жидкостным химическим селективным стравливанием контактного слоя GaAs гетероструктуры в травителе, содержащем гидроксид аммония (NH4OH), перекись водорода (H2O2) и деионизованную воду, и последующим травлением слоя AlGaAs гетероструктуры на глубину (0,8-1,1) мкм в травителе, содержащем фторид аммония (NH4F), фтороводород (HF), перекись водорода и деионизованную воду. Изобретение позволяет увеличить интенсивность электролюминесценции изготовленного по нему светоизлучающего диода, имеет высокую технологичность процесса текстурирования и сниженную стоимость. 3 ил., 3 пр.

Конструкция концентраторного фотоэлектрического модуля относится к солнечной энергетике, и может быть использована в электронной промышленности для преобразования световой энергии в электрическую. Концентраторный фотоэлектрический модуль включает фронтальную светопрозрачную панель (1), тыльную алюминиевую панель (2), боковые стенки (3). На внутренней поверхности фронтальной светопрозрачной панели (1) сформирована концентрическая линза Френеля (4). На внутренней поверхности тыльной алюминиевой панели (2) закреплена теплопроводящая электроизолирующая плата (5). На плате (5) смонтирован фотоэлектрический преобразователь (6), установленный в фокусе линзы Френеля (4). На внешней поверхности тыльной алюминиевой панели (2) расположено устройство (7) осушения, заполненное гранулами регенеративного влагопоглощающего материала (8). Устройство (7) осушения размещено между тыльной алюминиевой панелью (2) и нижним основанием (9). Объем устройства (7) осушения составляет (20-30)% объема модуля над его тыльной панелью (2). Внутри устройства (7) параллельно его двум противоположным боковым стенкам (3) установлены алюминиевые герметичные перегородки (10). Торцы герметичных перегородок (10) в шахматном порядке отстоят с зазором от противолежащих боковых стенок (3), образуя зигзагообразный канал (11) для воздуха. В отверстие тыльной алюминиевой панели (2) вставлен пылезащитный фильтр (12), а в отверстие нижнего основания (9) вставлен гидрофобный фильтр (13). Фильтры (12) и (13) установлены примыкающими к противоположным боковым стенкам (3) и соединены упомянутым зигзагообразным каналом (11). Конструкция концентраторного фотоэлектрического модуля, выполненного согласно изобретению, обеспечивает увеличение энерговыработки модулем за счет увеличения скорости осушения воздуха, поступающего в модуль, и предотвращения выпадения конденсата во внутреннем объеме модуля. 3 з.п. ф-лы, 5 ил.
Способ изготовления фотоэлектрического концентраторного модуля включает формирование множества солнечных элементов, формирование вторичных концентраторов солнечного излучения, расположенных соосно над солнечными элементами, формирование панели первичных концентраторов, расположенных соосно над вторичными концентраторами. Для формирования вторичных концентраторов солнечного излучения изготавливают разборную полую форму в виде правильной четырехгранной усеченной пирамиды с внутренней зеркальной поверхностью и с меньшим основанием, совпадающим по размерам с поверхностью солнечного элемента. Устанавливают разборную полую форму меньшим основанием на поверхность солнечного элемента, заполняют полую форму жидкой смесью силиконовых компонентов, на поверхность жидкой смеси силиконовых компонентов устанавливают совпадающую по размерам с большим основанием полой формы стеклянную пластину. Полимеризуют смесь силиконовых компонентов при температуре, равной усредненной рабочей температуре вторичного концентратора в рабочем режиме при освещении модуля солнечным излучением, а после завершения полимеризации разбирают полую форму и отделяют детали полой формы от изготовленного вторичного концентратора. Изобретение обеспечивает упрощение технологии изготовления вторичного концентратора, приводящее к снижению стоимости изготовления фотоэлектрического концентраторного модуля. 4 з.п. ф-лы.

Концентраторный фотоэлектрический модуль содержит монолитную фронтальную панель (3), боковые стенки (1) и тыльную панель (2), по меньшей мере один первичный оптический концентратор (4), по меньшей мере один вторичный оптический концентратор в форме фокона (9), меньшим основанием обращенным к фотоэлектрическому элементу (10) с теплоотводящим элементом (11), размещенным на фронтальной поверхности тыльной панели (2). Большее основание фокона (9) закрыто пластиной (12) из силикатного стекла, прикрепленной оптическим силиконом-герметиком к граням большего основания фокона (9). Противолежащие грани большего основания фокона (9) снабжены L-образными лепестками (7), горизонтальные полки (8) которых закреплены на теплоотводящем элементе (11) для образования зазора между меньшим основанием фокона (9) и светочувствительной поверхностью фотоэлектрического элемента (10). Области контактов (16) к фотоэлектрическому элементу (10), к теплоотводящему элементу (11) и пространства между гранями меньшего основания фокона (9) и несветочувствительными поверхностями фотоэлектрического элемента (10) заполнены слоем оптического силикона-герметика (18). Концентраторный фотоэлектрический модуль имеет высокую надежность и длительный срок службы при сохранении высокой эффективности преобразования солнечного излучения в электроэнергию. 6 з.п. ф-лы, 5 ил.

Изобретение относится к солнечной фотоэнергетике, к мониторингу солнечных электростанций. Устройство мониторинга солнечной электростанции включает блок измерения параметров и отбора максимальной мощности солнечной батареи, блок коммутации, блок электронной нагрузки, блок управления, блок измерения параметров солнечного излучения, блок измерения параметров окружающей среды, блок передачи данных, включающий последовательно соединенные каналами связи модем, сервер и компьютер, блок контроля точности слежения за Солнцем и блок анализа данных, при этом блок контроля точности слежения за Солнцем включает цилиндрический корпус, в котором последовательно установлены входная диафрагма, полупрозрачный экран и регистрирующий элемент в виде позиционно-чувствительной матрицы. Изобретение обеспечивает возможность создания устройства мониторинга солнечной электростанции, которое позволяет достигнуть повышения энерговыработки солнечной электростанции путем контроля точности слежения за Солнцем. 2 ил.

Установка слежения за Солнцем включает промежуточную раму в виде круглой цилиндрической балки (1), установленную с возможностью вращения посредством первых цилиндрических шарниров (2), (5) на двух стойках (3), (6), прикрепленных к основанию (4), раму (13) солнечных панелей, прикрепленную с возможностью вращения к балке (1) посредством опоры (17) со вторым цилиндрическим шарниром (18), ось которого лежит в плоскости, ортогональной осям первых цилиндрических шарниров (2), (5), и блок управления (25), подключенный первым и вторым выходами соответственно к первому и второму приводам (19), (21). Рама (13) снабжена первым оптическим солнечным датчиком (23), чувствительным к смещению Солнца в плоскости эклиптики, и вторым солнечным датчиком (24), чувствительным к смещению Солнца в плоскости, проходящей через ось Земли и место локализации установки. Одна из стоек (3) или (6) снабжена механизмом (8) ее вертикального возвратно-поступательного перемещения. Способ ориентации установки слежения за Солнцем заключается в том, что определяют направления сторон света в месте расположения установки на местности, и оси первых цилиндрических шарниров (2), (5) промежуточной рамы в виде круглой цилиндрической балки (1) устанавливают в направлении восток-запад, а балку (1) устанавливают под углом к горизонтали, равным географической широте места расположения установки. Установка слежения за Солнцем и способ ее ориентации характеризуются значительным уменьшением ежедневного необходимого смещения положения солнечных панелей (14), (15), экономией потребляемой электроэнергии и увеличением ресурса работы установки. 2 н. и 3 з.п. ф-лы, 3 ил., 2 пр.

Изобретение относится к оптоэлектронике и фотоэнергетике и может быть использовано для создания оптоволоконных систем передачи энергии по лазерному лучу. Заявленный оптоволоконный фотоэлектрический преобразователь лазерного излучения включает оптически последовательно соединенные лазер, одномодовое оптоволокно и многомодовое оптоволокна, фокон и фотоэлемент. Одномодовое и многомодовое оптоволокна оптически стыкованы так, что оптические оси оптоволокон расположены между собой под углом . Многомодовое оптоволокно оптически стыковано с фоконом, диаметр входного малого торца фокона установлен равным диаметру D сердечника многомодового оптоволокна, а радиус выходного большого торца фокона установлен равным радиусу фоточувствительной поверхности фотоэлемента, разделенного на электрически последовательно скоммутированные секторы. Технический результат – увеличение выходной мощности фотоэлектрического преобразователя, увеличение выходного напряжения до 3-4 В при сохранении высокого КПД фотопреобразования – более 40 % и при мощности лазерного излучения до 100 Вт и более. 1 з.п. ф-лы, 7 ил.

Система управления платформой концентраторных солнечных модулей содержит платформу (6) с концентраторными каскадными солнечными модулями, оптический солнечный датчик (24), выполненный в виде CMOS матрицы, подсистему (7) азимутального вращения, подсистему (8) зенитального вращения, включающую датчик положения платформы по зенитальному углу, центральный блок (23) управления, содержащий контроллер, блок (26) часов реального времени, датчик (13) числа оборотов первого электродвигателя (12), датчик (19) числа оборотов второго электродвигателя (18). Система обеспечивает увеличение КПД солнечной установки и сводит к минимуму время поиска и точного наведения на солнечный диск на протяжении всего срока службы солнечной установки. 2 ил.

Изобретение относится к солнечной фотоэнергетике и может найти применение как в мощных солнечных электростанциях, так и в качестве фотоэлектрической энергоустановки индивидуального пользования

Изобретение относится к измерительной технике и предназначено для бесконтактного неразрушающего контроля качества чипов полупроводниковых фотопреобразователей, в частности солнечных элементов

Изобретение относится к солнечной энергетике, в частности к имитаторам солнечного излучения на основе импульсных газоразрядных ламп для измерения световых вольтамперных характеристик и других фотоэлектрических параметров солнечных фотоэлементов и фотоэлектрических модулей с концентраторами излучения

Изобретение относится к измерительной технике и предназначено для бесконтактного неразрушающего контроля качества чипов полупроводниковых фотопреобразователей

Изобретение относится к солнечной энергетике, в частности к устройствам, позволяющим имитировать реальное солнечное излучение искусственными источниками света

Изобретение относится к солнечной энергетике и может найти применение как в солнечных электростанциях, так и в качестве энергетической установки индивидуального пользования

 


Наверх