Патенты автора Иванов Лев Алексеевич (RU)

Изобретение относится к способам переработки углеродсодержащей горной породы – шунгита, и может быть использовано для фильтрации воды на водопроводных очистных сооружений, в качестве засыпки в бытовых фильтрах для очистки бытовой воды, для очистки сточных вод, отделения нефтепродуктов. Исходное сырье в виде раздробленной шунгитовой породы обрабатывают в высокочастотном плазмотроне при температуре 4000-6000°C с мощностью плазмотрона до 90 кВт в потоке газовоздушной смеси с добавлением аргона в присутствии жесткого ультрафиолета. Обеспечивается получение частиц шунгита с развитой поверхностью (до 1000 м2/г) и высоким удельным сопротивлением и увеличение выхода продукта. 2 з.п. ф-лы, 1 табл.

Изобретение относится к технике оптического приборостроения и касается устройства имитации инфракрасного излучения наземных объектов. Устройство содержит микрозеркальный матричный сканирующий узел, инфракрасный излучатель, набор линз и зеркал, объективы, приводы объективов, переключатель объективов и систему наведения. Кроме того, устройство содержит входные регистры, блоки оценки эмпирических коэффициентов, блоки оценки коэффициента пропускания атмосферы, элементы задержки, блоки умножения, элементы ИЛИ, группы блоков умножения, группу блоков возведения в степень, группу регистров, блок оценки энергетической яркости излучения, блок выдачи команд переключения, блок индикации, генератор потоковых импульсов и распределитель импульсов. Технический результат заключается в повышении эффективности проведения испытаний. 3 ил.

Изобретение относится к области практических исследований температурных изменений в разных областях науки и может использоваться, например, в метеорологических и экологических исследованиях. Достигаемый технический результат - повышение эффективности имитации поведения системы, подверженной температурным колебаниям во времени, либо группы объектов с разными меняющимися температурными характеристиками. Система имитации инфракрасной обстановки для математического моделирования включает в себя первый компьютер, выполненный с возможностью загрузки данных об объекте в виде математической модели путем создания набора цифровых данных и передачи этих данных контроллеру, связанному с DMD-матрицей, выполненной с возможностью отображения на поле этой матрицы в графической форме изображения математической модели объекта, устройство подсветки инфракрасным излучением указанного изображения на поле DMD-матрицы, с которым связано проекционное устройство, которое передает оптический поток данных в тепловизионное приемное устройство, с которым связан второй компьютер, который обрабатывает данные и формирует алгоритм функционирования объекта. 2 ил.

Способ включает освещение образца, регистрацию отраженного излучения, усреднение измерений по различным точкам образца. Выбирают углы освещения образца исходя из углов наблюдения βi=αi/2, где αi - угол наблюдения i-го фотоприемника, включая αi=0. Первое измерение производят при α=0 и β=0, оценивают полуширину w индикатрисы рассеяния I(α) при β=0 по уровню 0,1 от максимального значения. Изменяют угол освещения βi на βi+1 и повторяют регистрацию усредненных значений, пока в диапазоне от α=0 до α=2βw распределение I(α) не станет двумодальным с локальным минимумом с величиной менее 15-20% от величины 0,5·(I(α=0, β=0)+I(2βw)). Определяют вид индикатрисы рассеяния относительно направления зеркального отражения I(α-2β) и аппроксимируют ее функцией fA(x), где х=α-2β. Определяют величины интенсивности в направлении зеркального отражения Im(β) и аппроксимируют эту функцию в диапазоне от β>w/2 (или 15°) до 45° функцией IA(β). Производят экстраполяцию IA(β) в область β<w/2 и определяют величину IA(β=0). Определяют световозвращенную и диффузную составляющие как разность Ii=I(α=0, β=0)-IA(β=0); для ненулевого (стандартного) угла βs вычисляют как Ii=I(α=0, β=βS)-fA(βS)·IA(βS). Если Ii(β=0)<<IA(β=0), то исследованный образец не обладает истинным световоз-вращением. Технический результат - увеличение точности измерений, определение соотношения световозвращенной и диффузной составляющих и диаграммы направленности и минимизация времени измерений. 7 ил.

Изобретение относится к средствам имитации аппаратуры ракеты
Изобретение относится к технологии производства неорганических мелкодисперсных наполнителей, которые могут быть использованы в различных отраслях техники, в частности к получению сфероидизированных полидисперсных порошков

Изобретение относится к информационно-измерительным системам и предназначено для оперативного контроля информационного взаимодействия сложного изделия, например ракеты, с аппаратурой проверочных комплексов и другой аппаратуры

Изобретение относится к информационно-измерительным системам и может быть использовано для имитации стыковки ракеты с аппаратурой носителя при помощи устройства, имитирующего функционирование ракеты в процессе предстартовой подготовки и пуска

Изобретение относится к области оперативного контроля информационного взаимодействия ракеты с аппаратурой носителей или с аппаратурой проверочных комплексов

Изобретение относится к информационно-измерительным системам и предназначено для проверки электрического и информационного взаимодействия ракеты с аппаратурой носителя при помощи устройства, имитирующего предполетные функции ракеты

 


Наверх